Plasmonic filters and optical directional couplers based on wide Metal-Insulator-Metal structure.

Opt Express

Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

Published: April 2011

The wide Metal-Insulator-Metal (WMIM) structure is proposed and its characteristics are analyzed numerically using finite-difference time-domain (FDTD) method. Simulations show that power can be periodically transferred between its two Metal-Insulator (MI) interfaces while power is injected asymmetrically. Novel plasmonic filters and optical directional couplers (ODCs) based on WMIM structure are proposed, which work similarly as traditional dielectric devices. Due to the simple structures without thin metal gaps, our result may provide an alternative way to realize the fabrication of nanoscale optical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.007633DOI Listing

Publication Analysis

Top Keywords

plasmonic filters
8
filters optical
8
optical directional
8
directional couplers
8
wide metal-insulator-metal
8
wmim structure
8
structure proposed
8
couplers based
4
based wide
4
metal-insulator-metal structure
4

Similar Publications

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

Although wastewater-based epidemiology has been used extensively for the surveillance of viral diseases, it has not been used to a similar extent for bacterial diseases. This is in part owing to difficulties in distinguishing pathogenic from nonpathogenic bacteria using PCR methods. Here, we show that surface-enhanced Raman spectroscopy (SERS) can be a scalable, label-free method for the detection of bacteria in wastewater.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.

View Article and Find Full Text PDF

According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!