TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364732 | PMC |
http://dx.doi.org/10.1038/cr.2011.72 | DOI Listing |
Circ Res
June 2019
From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY (B.C., S.H., Y.S., Y-J.W., A.H., A.B., N.G.F.).
Rationale: TGF (transforming growth factor)-β is critically involved in myocardial injury, repair, and fibrosis, activating both Smad (small mothers against decapentaplegic)-dependent and non-Smad pathways. The in vivo role of TGF-β signaling in regulation of macrophage function is poorly understood. We hypothesized that in the infarcted myocardium, activation of TGF-β/Smad signaling in macrophages may regulate repair and remodeling.
View Article and Find Full Text PDFKidney Int
October 2016
Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Division of Kidney Disease, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.
The function of hypoxia-inducible factor-1α (HIF-1α) in chronic kidney disease is disputed. Here we report that interactions of HIF-1α with transforming growth factor-β (TGF-β) signaling may promote its fibrotic effects. Knockout of HIF-1α is protective against glomerulosclerosis and glomerular type-I collagen accumulation in a mouse podocyte ablation model.
View Article and Find Full Text PDFLab Invest
June 2016
Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
We evaluated the effects of the loss of Smad3 on the development of experimental argon laser-induced choroidal neovascularization (CNV) in mice. An in vitro angiogenesis model was also used to examine the role of transforming growth factor-β1 (TGFβ1)/Smad3 signaling in vessel-like tube formation by human umbilical vein endothelial cells (HUVECs). CNV was induced in eyes of 8-12-week-old B6.
View Article and Find Full Text PDFOncotarget
February 2016
Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
Myofibroblasts are a main cell-type of collagen-producing cells during tissue fibrosis, but their origins remains controversial. While bone marrow-derived myofibroblasts in renal fibrosis has been reported, the cell origin and mechanisms regulating their transition into myofibroblasts remain undefined. In the present study, cell lineage tracing studies by adoptive transfer of GFP+ or dye-labelled macrophages identified that monocyte/macrophages from bone marrow can give rise to myofibroblasts via the process of macrophage-myofibroblast transition (MMT) in a mouse model of unilateral ureteric obstruction.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2016
Department of Pathology, University of Washington, Seattle, Washington; and
Chronic liver injury leads to fibrosis and cirrhosis. Cirrhosis, the end stage of chronic liver disease, is a leading cause of death worldwide and increases the risk of developing hepatocellular carcinoma. Currently, there is a lack of effective antifibrotic therapies to treat fibrosis and cirrhosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!