Structural and topological data suggest that serine site-specific DNA recombinases exchange duplex DNAs by rigid-body relative rotation of the two halves of the synapse, mediated by a flat protein-protein interaction surface. We present evidence for this rotational motion for a simple serine recombinase, the Bxb1 phage integrase, from a single-DNA-based supercoil-release assay that allows us to follow crossover site cleavage, rotation, religation, and product release in real time. We have also used a two-DNA braiding-relaxation experiment to observe the effect of synapse rotation in reactions on two long molecules. Relaxation and unbraiding are rapid (averaging 54 and 70 turns/s, respectively) and complete, with no discernible pauses. Nevertheless, the molecular friction associated with rotation is larger than that of type-I topoisomerases in a similar assay. Surprisingly we find that the synapse can stay rotationally "open" for many minutes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088605 | PMC |
http://dx.doi.org/10.1073/pnas.1018436108 | DOI Listing |
Sci Rep
December 2024
Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.
The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
Over the past three decades, the integrase (Int) from phage C31 has become a valuable genome engineering tool across various species. C31 Int was thought to mediate unidirectional site-specific integration ( × to and ) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision ( × to and ) at low frequencies in and , causing genetic instability in engineered strains.
View Article and Find Full Text PDFNat Commun
November 2024
School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK.
Sci Rep
November 2024
School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK.
Serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse excisive reaction, generating new recombination sites, attR and attL.
View Article and Find Full Text PDFNat Commun
October 2024
Engineering Biology, Earlham Institute, Norwich, UK.
During development, most cells experience a progressive restriction of fate that ultimately results in a fully differentiated mature state. Understanding more about the gene expression patterns that underlie developmental programs can inform engineering efforts for new or optimized forms. Here, we present a four-state integrase-based recorder of gene expression history and demonstrate its use in tracking gene expression events in Arabidopsis thaliana in two developmental contexts: lateral root initiation and stomatal differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!