Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Patients with hippocampal damage are sometimes impaired at remembering information across delays as short as a few seconds. How are these impairments to be understood? One possibility is that retention of some kinds of information is critically dependent on the hippocampus, regardless of the retention interval and regardless of whether the task depends on working memory or long-term memory. Alternatively, retention may be dependent on the hippocampus only when the task involves a memory load large enough to exceed working memory capacity. To explore these possibilities, we assessed the performance of patients with hippocampal lesions on two tasks requiring retention of the same object-in-scene information across a brief delay. The tasks placed different demands on memory. In one task, which used a continuous recognition format, participants needed to try to hold up to nine scenes in mind, even when no scene intervened between the study scene and the corresponding test scene. Patients were impaired in this condition. In a second task, using a conventional study-test format, participants needed to hold in mind only one scene at a time for either 3 or 14 sec. With this procedure, patients performed as well as controls after a 3-sec delay but were impaired after a 14-sec delay. We suggest that retention of object-in-scene information is dependent on the hippocampus only when working memory is insufficient to support performance (because memory load is high or the retention interval is long). In these circumstances performance depends, at least in part, on long-term memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083641 | PMC |
http://dx.doi.org/10.1101/lm.2010711 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!