Identification of an extraneous black particle in a glass syringe: extractables/leachables case study.

PDA J Pharm Sci Technol

Department of Formulation and Analytical Resources, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.

Published: April 2016

An unexpected, black particle (∼300 microns) was visually observed adhering to the interior shoulder of a prefilled glass syringe containing a biological drug product. The goal of this study was to determine the source, identity, and leachables of the black particle. The particle originated from a polymeric pin used during the syringe manufacturing process. Fourier transform infrared (FTIR) spectra comparison of the black particle and polymeric pin correlated to a database match of Nylon-MXD6 with glass fibers. Liquid chromatography/mass spectroscopy analyses identified Nylon-MXD6 and Nylon-6 photo-oxidized-related compounds in both the pin extract and syringe solution. The black particle originated from the pin and contained glass fibers, Nylon-MXD6, and Nylon-6. All nylon-related compounds were observed at <260 ng/mL (ppb) in the syringe solution. Syringes without black particles contained no detectable levels of nylon-related compounds, suggesting that routine contact between a pin and syringe barrel may not lead to syringe contamination or leachables originating from the pin. Abnormal heat exposure and/or extensive pin usage may have led to pin wear and tear.

Download full-text PDF

Source

Publication Analysis

Top Keywords

black particle
20
glass syringe
8
particle originated
8
polymeric pin
8
glass fibers
8
nylon-mxd6 nylon-6
8
particle
6
black
5
identification extraneous
4
extraneous black
4

Similar Publications

This study optimized the process of extracting protein from black garlic using an alkaline dissolution and acid precipitation method through response surface methodology. The optimal extraction conditions were determined as a solid-to-liquid ratio of 1:50, an extraction time of 100 min, an extraction temperature of 30 °C, and an alkaline extraction pH of 9.0.

View Article and Find Full Text PDF

Microplastics (MPs) and other anthropogenic particles (APs) are pervasive environmental contaminants found throughout marine and aquatic environments. We quantified APs in the edible tissue of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp, comparing AP burdens across trophic levels and between vessel-retrieved and retail-purchased individuals. Edible tissue was digested and analyzed under a microscope, and a subset of suspected APs was identified using spectroscopy (μFTIR).

View Article and Find Full Text PDF

PEG10 is a retroelement-derived Mart-family gene that is necessary for placentation and has been implicated in neurological disease. PEG10 resembles both retrotransposon and retroviral proteins and forms virus-like particles (VLPs) that can be purified using iodixanol ultracentrifugation. It is hypothesized that formation of VLPs is crucial to the biological roles of PEG10 in reproduction and neurological health.

View Article and Find Full Text PDF

Characterization of Composites from Post-Consumer Polypropylene and Oilseed Pomace Fillers.

Polymers (Basel)

December 2024

Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.

This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood-plastic composites. The composite production method combined extrusion and hot flat pressing.

View Article and Find Full Text PDF

In recent years, the search for more sustainable fillers for elastomeric composites than silica and carbon black has been underway. In this work, silanized starch was used as an innovative filler for elastomeric composites. Corn starch was chemically modified by silanization (with n-octadecyltrimethoxysilane) via a condensation reaction to produce a hydrophobic starch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!