Anion exchanger and the resistance against thermal haemolysis.

Int J Hyperthermia

Department of Physics, Biophysics, Roentgenology and Radiology, Medical Faculty, Thracian University, 11 Armeyska str., Stara Zagora, Bulgaria.

Published: August 2011

4,4'-Diiso-thiocyanato stilbene-2,2'-disulphonic acid (DIDS) is a membrane-impermeable, highly specific covalent inhibitor and powerful thermal stabiliser of the anion exchanger (AE1), the major integral protein of erythrocyte membrane (EM). Suspensions of control and DIDS-treated (15 µM, pH 8.2) human erythrocytes were heated from 20° to 70°C using various but constant heating rates (1-8°C/min). The cellular electrolyte leakage exhibited a sigmoidal response to temperature as detected by conductometry. The critical midpoint temperature of leakage, T(mo), extrapolated to low heating rate (0.5°C/min) was used as a measure for EM thermostability. T(mo) was greater for DIDS-treated erythrocytes, 63.2° ± 0.3°C, than for intact erythrocytes, 60.7° ± 0.2°C. The time, t(1/2), for 50% haemolysis of erythrocytes, exposed to 53°C was used as a measure for the resistance of erythrocytes against thermal haemolysis. The t(1/2) was also greater for DIDS-treated erythrocytes, 63 ± 3 min, than for intact erythrocytes, 38 ± 2 min. The fluorescent label N-(3-pyrenyl)maleimide and EPR spin label 3-maleimido-proxyl, covalently bound to sulphydryl groups of major EM proteins, were used to monitor the changes in molecular motions during transient heating. Both labels reported an intensification of the motional dynamics at the denaturation temperatures of spectrin (50°C) and AE1 (67°C), and, surprisingly, immobilisation of a major EM protein, presumably the AE1, at T(mo). The above results are interpreted in favour of the possible involvement of a predenaturational rearrangement of AE1 copies in the EM thermostability and the resistance against thermal haemolysis.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02656736.2011.554064DOI Listing

Publication Analysis

Top Keywords

thermal haemolysis
12
anion exchanger
8
resistance thermal
8
greater dids-treated
8
dids-treated erythrocytes
8
intact erythrocytes
8
erythrocytes
7
exchanger resistance
4
thermal
4
haemolysis
4

Similar Publications

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.

View Article and Find Full Text PDF

To overcome the barriers often met by traditional ophthalmic formulations, polymeric films can be utilized as an alternative to enhance drug retention duration while managing medication release. In the current investigation, polymeric films made of poly (vinyl) alcohol (PVA) and chitosan (CS) loaded with Moxifloxacin Hydrochloride (M-HCl) and plasticized with Glutaraldehyde were formulated as potential ophthalmic delivery for the treatment of conjunctivitis. The thickness, surface pH, opacity, folding endurance, and % hemolysis were measured, followed by the transparency, microscopy, electrical conductivity, mechanical strength, swelling index, and invitro drug release studies.

View Article and Find Full Text PDF
Article Synopsis
  • - This study developed seaweed-based biomembranes by combining materials like agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, assessing their physical and mechanical properties through various analysis techniques, including SEM and FT-Raman.
  • - The strongest biomembrane (agar + chitosan) showed a tensile strength of 53.11 N/mm, and the maximum antioxidant and antimicrobial activities were recorded for quercetin and chitosan, respectively, against E. coli.
  • - The biomembranes exhibited low hemolysis (0.95%) and cytotoxicity rates around 62.51% to 63.87%, indicating their potential for biomedical and packaging applications
View Article and Find Full Text PDF

This study focuses on the development of biomaterials for bone regeneration highlighting 59S bioactive glass (59S BG), tri-calcium phosphate (TCP), and their 1:1 composite (59S BG/TCP). The synthesized materials demonstrated excellent properties for bone tissue engineering. Characterization revealed their thermal stability up to 900 °C, as confirmed by thermogravimetric analysis (TGA), while X-ray diffraction (XRD) identified calcium phosphate and silicate phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!