Metabolic activation of peripheral blood leukocytes (chemiluminescence) from 27 children with Down syndrome (DS) and 23 age and sex-matched control children after phagocytic stimulation by opsonized zymosan particles was investigated through a chemiluminescence assay. Using autologous plasma or serum as opsonizing media, phagocytic activity of circulating leukocytes was significantly decreased in DS subjects. A further decrease of phagocytic activity was found in neutrophils from DS children, when normal heterologous plasma or sera were used. On the other hand, sera or plasma from DS subjects significantly increased phagocytic activation of leukocytes from normal donors. In DS subjects opsonizing agents such as serum immunoglobulins and complement fractions were in the normal ranges of concentration. Thus, the impaired chemiluminescence of neutrophils was mainly due to a metabolic impairment at the cellular level. A decreased production of radicals derived from the oxygen metabolism in neutrophils may be an important step of immune derangement leading to the increased incidence of infectious diseases frequently associated with DS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.1320370749DOI Listing

Publication Analysis

Top Keywords

phagocytic activation
8
phagocytic activity
8
phagocytic
5
derangement non-specific
4
non-specific immunity
4
immunity syndrome
4
subjects
4
syndrome subjects
4
subjects low
4
low leukocyte
4

Similar Publications

Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma.

View Article and Find Full Text PDF

Purification, structural characterization, and in vitro immunomodulatory activity of a low-molecular-weight polysaccharide from cultivated Chinese cordyceps.

Int J Biol Macromol

January 2025

Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China; College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, Hunan 423000, China. Electronic address:

Cultivated Chinese cordyceps, an optimal substitute for the endangered wild resource, has recently been produced on a large scale. This work sought to explore the structural features and immunomodulatory activity of a novel low-molecular-weight polysaccharide (CSP1a, 15.7 kDa) isolated from cultivated Chinese cordyceps.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Unlocking the potential of : A breakthrough in liver cancer treatment Wnt/β-catenin pathway modulation.

World J Gastroenterol

January 2025

Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.

Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving systemic inflammation in T2DM; however, the underlying single-cell mechanisms remain inadequately defined.

Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!