In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca(10)(PO(4))(6)F(2)) and hydroxyapatite (HA; Ca(10)(PO(4))(6)(OH)(2)), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatible and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075893 | PMC |
http://dx.doi.org/10.2147/IJN.S15461 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.
Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.
View Article and Find Full Text PDFPathophysiology
November 2024
Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemicals and Fertilizers, Government of India, Hyderabad 500037, Telangana, India.
To investigate the anti-inflammatory, antioxidant, and diabetic wound healing properties of the novel topical formulation [Ferulic acid-loaded nanoemulgel (DLMGO-G)]. Ferulic acid nanoemulsion developed with lemongrass oil is investigated in diabetic wound healing. Further nanoemulsion is incorporated into 1% carbopol 934 to obtain the DLMGO-G.
View Article and Find Full Text PDFBMC Vet Res
October 2024
Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt.
Background: Due to the adverse effects of industrial chemicals and their carcinogenicity and toxicity for humans, the debates have increased on using natural preservatives. This study was conducted to investigate the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against Aspergillus flavus in vivo by inoculation in laboratory-manufactured Ras cheese. A novel, safe, and natural approach of nanoprecipitation using acetic acid was employed to prepare nisin nanoparticles.
View Article and Find Full Text PDFJ Drug Target
November 2024
Crescent School of Pharmacy, B.S.Abdur Rahman Crescent Institute of Science & Technology, Vandalur, India.
The present research looked for ways to develop shielded nanoparticles (NPs)-drug transporters made of chitosan (CS) to enhance the bioavailability of edoxaban tosylate monohydrate (ETM) for oral administration by examining the correlation among design aspects and data from experiments using response surface methodology (RSM). ETM-loaded CS nanoparticles (ETM-CS-NPs) were developed using the ionic gelation of CS with tripolyphosphate (TPP). Utilising Zeta-sizer and scanning electron microscopy, the ETM-CS-NPs were evaluated for particle size (PS), zeta potential (ZP), surface morphology, polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL).
View Article and Find Full Text PDFPhysiol Rep
July 2024
Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
The present study aimed to investigate the effect of catechin-loaded Chitosan-Alginate nanoparticles (NPs) on cognitive function in an aluminum chloride (AlCl)-induced rat model of Alzheimer's disease (AD). The Catechin-loaded Chitosan-Alginate nanocarriers were synthesized through ionotropic gelation (IG) method. Physio-chemical characterization was conducted with the Zetasizer Nano system, the scanning electron microscope, and the Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!