High-harmonic generation from plasma mirrors at kilohertz repetition rate.

Opt Lett

Laboratoire d'Optique Appliquée, Ecole Nationale Superieur de Techniques Avancées-Paristech, Ecole Polytechnique, CNRS, 91761 Palaiseau Cedex, France.

Published: April 2011

AI Article Synopsis

  • The study presents the first successful high-harmonic generation from plasma mirrors operating at a frequency of 1 kHz.
  • Harmonics up to the nineteenth order are produced through focused laser pulses with very high intensity, and the setup achieves precise targeting of the moving plasma mirrors without wavefront correction.
  • Advanced online interferometry is used to stabilize the target's motion, enabling consistent data collection and confirming that coherent wake emission is the primary process behind the harmonic generation.

Article Abstract

We report the first demonstration of high-harmonic generation from plasma mirrors at a 1 kHz repetition rate. Harmonics up to nineteenth order are generated at peak intensities close to 10¹⁸ W/cm² by focusing 1 mJ, 25 fs laser pulses down to 1.7 μm FWHM spot size without any prior wavefront correction onto a moving target. We minimize target surface motion with respect to the laser focus using online interferometry to ensure reproducible interaction conditions for every shot and record data at 1 kHz with unprecedented statistics. This allows us to unambiguously identify coherent wake emission as the main generation mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.001461DOI Listing

Publication Analysis

Top Keywords

high-harmonic generation
8
generation plasma
8
plasma mirrors
8
repetition rate
8
mirrors kilohertz
4
kilohertz repetition
4
rate report
4
report demonstration
4
demonstration high-harmonic
4
mirrors khz
4

Similar Publications

Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory.

J Chem Theory Comput

January 2025

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • Advanced techniques like high harmonic generation and X-ray free-electron lasers have enabled the study of ultrafast electron and spin dynamics on extremely short timescales.
  • The authors propose using magnetic X-ray scattering (MXS) to measure molecular spin-state dynamics and outline a protocol for simulating MXS patterns using multiconfigurational quantum chemistry.
  • The method is validated through simulations of spin-flip dynamics in the TiCl molecule, showcasing MXS's ability to detect real-time spin-state changes and infer spatial characteristics of spin density from diffraction patterns.
View Article and Find Full Text PDF

We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

Laser excitation of the 1-2 transition in singly-ionized helium.

Commun Phys

December 2024

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.

View Article and Find Full Text PDF

High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!