Chronic inflammation characterized by T cell and macrophage infiltration of visceral adipose tissue (VAT) is a hallmark of obesity-associated insulin resistance and glucose intolerance. Here we show a fundamental pathogenic role for B cells in the development of these metabolic abnormalities. B cells accumulate in VAT in diet-induced obese (DIO) mice, and DIO mice lacking B cells are protected from disease despite weight gain. B cell effects on glucose metabolism are mechanistically linked to the activation of proinflammatory macrophages and T cells and to the production of pathogenic IgG antibodies. Treatment with a B cell-depleting CD20 antibody attenuates disease, whereas transfer of IgG from DIO mice rapidly induces insulin resistance and glucose intolerance. Moreover, insulin resistance in obese humans is associated with a unique profile of IgG autoantibodies. These results establish the importance of B cells and adaptive immunity in insulin resistance and suggest new diagnostic and therapeutic modalities for managing the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270885PMC
http://dx.doi.org/10.1038/nm.2353DOI Listing

Publication Analysis

Top Keywords

insulin resistance
20
dio mice
12
cells production
8
production pathogenic
8
pathogenic igg
8
igg antibodies
8
resistance glucose
8
glucose intolerance
8
cells
7
insulin
5

Similar Publications

Background: The triglyceride glucose-body mass index (TyG-BMI) is considered to be a reliable surrogate marker of insulin resistance (IR). However, limited evidence exists regarding its association with the severity of coronary artery disease (CAD), particularly in hypertensive patients with different glucose metabolic states, including those with H-type hypertension. This study aimed to investigate the relationship between TyG-BMI and CAD severity across different glucose metabolism conditions.

View Article and Find Full Text PDF

Effects of Cirsium japonicum var. maackii on avelliation of metabolic disease by improving insulin resistance.

Lab Anim Res

January 2025

Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, The 1st Veterinary R&D Building Rm 301, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.

Background: Metabolic syndrome (MetS) refers to a group of risk factors that cause health problems, such as obesity, diabetes, dyslipidemia, and hyperglycemia. MetS is characterized by insulin resistance, which leads to abnormal insulin sensitivity. Cirsium japonicum var.

View Article and Find Full Text PDF

Critical updates on oral insulin drug delivery systems for type 2 diabetes mellitus.

J Nanobiotechnology

January 2025

School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by insulin resistance, leading to elevated blood sugar levels. Exogenous insulin can counteract the diminished response to insulin and effectively controlling blood glucose levels, thereby minimizing diabetes-related complications. However, given the injectable nature of exogenous insulin, apprehensions regarding its safety and the difficulties associated with its administration have hindered its widespread and prompt utilization.

View Article and Find Full Text PDF

Association between domain-specific physical activity and triglyceride‑glucose (TyG) index among US adults: Evidence from NHANES 2007-2018.

BMC Public Health

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, China, 201508.

Objectives: The triglyceride-glucose (TyG) index is not only a reliable marker for insulin resistance, but also has broad applications in assessing the risk of various diseases, including cardiovascular disease, stroke, depression, and Alzheimer's disease. The study aims to investigate the relationship between domain-specific moderate- or vigorous-intensity physical activity (MVPA) and TyG index among US adults.

Methods: The participants from the US National Health and Nutrition Examination Survey (NHANES) (2007-2018) were included.

View Article and Find Full Text PDF

Regular aerobic exercise has a significant impact on glucose metabolism and lipid profiles, contributing to overall health improvement. However, evidence for optimal exercise duration to achieve these effects is limited. This study aims to explore the effects of 4 and 8 weeks of moderate-intensity aerobic exercise on glucose metabolism, lipid profiles, and associated metabolic changes in young female students with insulin resistance and varying body mass, seeking to determine the optimal duration for physiological adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!