Kynurenic acid antagonizes hippocampal quinolinic acid neurotoxicity: behavioral and histological evaluation.

Neurosci Lett

Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes, Paris, France.

Published: November 1990

In the present study, we evaluate the ability of kynurenic acid to protect hippocampal neurons from the neurotoxicity of the N-methyl-D-aspartate (NMDA) agonist quinolinic acid. Bilateral intrahippocampal injection of quinolinic acid (120 nmol) led to severe behavioral disturbances and total loss of hippocampal neurons. Intrahippocampal co-injection of kynurenic acid (360 nmol) completely prevented cell loss and behavioral disturbances. However, the protection was incomplete when kynurenic acid was intraperitoneally injected (500 mg/kg, repeated during 4 days). These above results indicate that kynurenic acid can antagonize the neuronal degeneration mediated by excessive stimulation of NMDA receptors in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(90)90160-bDOI Listing

Publication Analysis

Top Keywords

kynurenic acid
20
quinolinic acid
12
hippocampal neurons
8
behavioral disturbances
8
acid
7
kynurenic
5
acid antagonizes
4
antagonizes hippocampal
4
hippocampal quinolinic
4
acid neurotoxicity
4

Similar Publications

Alterations in the kynurenine pathway, and in particular the balance of neuroprotective and neurotoxic metabolites, have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and antidepressant treatment response. In this study, we examined the relationship between changes in kynurenine pathway activity (Kynurenine/Tryptophan ratio), focusing on the balance of neuroprotective-to neurotoxic metabolites (Kynurenic Acid/Quinolinic Acid and Kynurenic Acid/3-Hydroxykynurenine ratios), and response to 8 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, including early changes four weeks after SSRI initiation. Additionally, we examined relationships between kynurenine metabolite ratios and three promising biomarkers of depression and antidepressant response: amygdala/hippocampal volume, and glutamate metabolites in the anterior cingulate cortex.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Identification of Two Flavonoids as New and Safe Inhibitors of Kynurenine Aminotransferase II via Computational and In Vitro Study.

Pharmaceuticals (Basel)

January 2025

Laboratory of Biotechnology, National Higher School of Biotechnology, Ville Universitaire (University of Constantine 3), Ali Mendjeli, BP E66, Constantine 25100, Algeria.

Kynurenine aminotransferase II (KAT-II) is a target for treating several diseases characterized by an excess of kynurenic acid (KYNA). Although KAT-II inactivators are available, they often lead to adverse side effects due to their irreversible inhibition mechanism. This study aimed to identify potent and safe inhibitors of KAT-II using computational and in vitro approaches.

View Article and Find Full Text PDF

In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms.

View Article and Find Full Text PDF

Background: Preterm birth affects approximately one in every ten neonates. The clinical outcomes depend on care and management factors, including the birth delivery method and the use of antibiotics.

Methods: This observational cohort study determined antimicrobial peptides, proteases, metabolomic, and microbiome profiles in fecal samples collected from 20 preterm and nine full-term neonates 48 h after birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!