Chromium removal from ion-exchange waste brines with calcium polysulfide.

Water Res

Department of Civil and Environmental Engineering, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 890154-4015, USA.

Published: May 2011

Chromium removal from ion-exchange (IX) brines presents a serious challenge to the water industry. Although chromium removal with calcium polysulfide (CaS(5)) from drinking waters has been investigated somewhat, its removal from ion-exchange brines has not been evaluated to date. In this study, a Central Composite Design as well as experimental coagulation tests were performed to investigate the influence of pH, CaS(5)/Cr(VI) molar ratio, alkalinity, and ionic strength in the removal of chromium from IX brines. The optimal pH range for the process was found to be pH 8-10.3 and brine alkalinity did not affect coagulation. The efficiency of chromium removal improved only slightly when the ionic strength increased from 0.1 M to 1.5 M; no significant difference was observed for an ionic strength change from 1.5 to 2.1 M. For chromium (VI) concentrations typically found in ion-exchange brines, a CaS(5)/Cr(VI) molar ratio varying from 0.6 to 1.4 was needed to obtain a final chromium concentration <5 mg/L. Maximum efficiency for total chromium removal was obtained when oxidation reduction potentials were between -0.1 and 0 (V). Solids concentrations (0.2-1.5 g/L) were found to increase proportionally with CaS(5) dosage. The results of this research are directly applicable to the treatment of residual waste brines containing chromium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2011.03.006DOI Listing

Publication Analysis

Top Keywords

chromium removal
16
removal ion-exchange
12
ion-exchange brines
12
ionic strength
12
calcium polysulfide
8
cas5/crvi molar
8
molar ratio
8
chromium
7
brines
5
removal
5

Similar Publications

Ultrafiltration membranes are widely used in the treatment of surface water. However, membrane fouling is a core issue that needs to be addressed in its application. Magnetotactic bacteria (MTB) show early film-forming and magnetotactic behaviour in the presence of external magnetic fields.

View Article and Find Full Text PDF

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Synchronous Photocatalytic Redox Conversion of Chromium(VI) and Arsenic(III) by Bimetallic Fe/Ti Metal-Organic Frameworks.

Inorg Chem

January 2025

School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.

In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.

View Article and Find Full Text PDF

Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions.

Int J Biol Macromol

January 2025

Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China; Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China. Electronic address:

Lignocellulosic waste is a prevalent byproduct of agricultural and forestry activities which is an excellent feedstock for the preparation of biochar. This research area is of interest to the scientific community due to its potential in environmental remediation. In this regard, this review examines the latest advancements in transforming lignocellulosic waste into biochar and explores recent innovations in enhancing its functionality for chromium ion removal.

View Article and Find Full Text PDF

Glycine betaine enhances heavy metal phytoremediation via rhizosphere modulation and nitrogen metabolism in king grass-Serratia marcescens strain S27 symbiosis.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!