Plasmodiophora brassicae is a soil-borne obligate intracellular parasite in the phylum Cercozoa of the Rhizaria that causes clubroot disease of crucifer crops. To control the disease, understanding the distribution and infection routes of the pathogen is essential, and thus development of reliable molecular markers to discriminate geographic populations is required. In this study, the nuclear ribosomal RNA gene (rDNA) repeat unit of P. brassicae was determined, with particular emphasis on the structure of large subunit (LSU) rDNA, in which polymorphic regions were expected to be present. The complete rDNA complex was 9513bp long, which included the small subunit, 5.8S and LSU rDNAs as well as the internal transcribed spacer and intergenic spacer regions. Among eight field populations collected from throughout Honshu Island, Japan, a 1.1 kbp region of the LSU rDNA, including the divergent 8 domain, exhibited intraspecific polymorphisms that reflected geographic isolation of the populations. Two new group I introns were found in this region in six out of the eight populations, and the sequences also reflected their geographic isolation. The polymorphic region found in this study may have potential for the development of molecular markers for discrimination of field populations/isolates of this organism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.protis.2011.02.005DOI Listing

Publication Analysis

Top Keywords

plasmodiophora brassicae
8
intraspecific polymorphisms
8
large subunit
8
molecular markers
8
lsu rdna
8
reflected geographic
8
geographic isolation
8
rdna
6
complete structure
4
structure nuclear
4

Similar Publications

Microbial Basis for Suppression of Soil-Borne Disease in Crop Rotation.

Microorganisms

November 2024

Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.

The effect of crop rotation on soil-borne diseases is a representative case of plant-soil feedback in the sense that plant disease resistance is influenced by soils with different cultivation histories. This study examined the microbial mechanisms inducing the differences in the clubroot (caused by pathogen) damage of Chinese cabbage ( subsp. ) after the cultivation of different preceding crops.

View Article and Find Full Text PDF

Plasmodiophora brassicae, a soil-borne biotroph, establishes galls as strong physiological sinks on Brassicaceae plants including Brassica napus and Arabidopsis thaliana. We compare transcriptional profiles of phloem dissected from leaf petioles and hypocotyls of healthy and infected B. napus plants.

View Article and Find Full Text PDF

Clubroot disease caused by the biotrophic pathogen , is one of the most serious threats to cruciferous crops production worldwide. is known for rapid adaptive evolution to overcome resistance in varieties. It is urgent to establish alternative management to control .

View Article and Find Full Text PDF

Transcriptome Analysis of Chinese Cabbage Infected with Plasmodiophora Brassicae in the Primary Stage.

Sci Rep

October 2024

Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.

Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis).

View Article and Find Full Text PDF

Genetic Mapping and Characterization of the Clubroot Resistance Gene in .

Int J Mol Sci

September 2024

Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • Clubroot is a serious soil-borne disease affecting cruciferous crops, making it essential to find and develop resistance genes to combat it.
  • This study focused on a cross between a resistant parent ("377") and a susceptible one ("12A") to investigate the genetic basis of clubroot resistance, revealing it is controlled by a single dominant gene.
  • Researchers localized this resistance gene to a specific genomic region on chromosome A08 and identified key genes associated with the resistance, providing valuable information for breeding programs targeting improved clubroot resistance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!