Functional cell-based assays are the preferred method to test for the presence of anti-rHuEPO neutralizing antibodies (NAbs). However, due to the unpredictable nature of test serum matrix effects on cell-based assays, confirmatory assays are essential for verifying NAb positive results observed during the course of sample testing. The cell-based assay used for the detection of NAbs described by Wei et al. [1] used 32D-EPOR cells, a murine myeloid cell line transfected with the human EPO receptor (EPOR). The 32D-EPOR cell line responded to either rHuEPO or murine interleukin 3 (mIL-3) with proliferation. NAbs were expected to only inhibit rHuEPO-induced cell proliferation and not mIL-3 induced proliferation. Due to reliance on proliferation, the results from this cell-based assay can be confounded by the presence of non-antibody inhibitory serum factors. This paper describes a strategy for confirming that the inhibition of rHuEPO-induced proliferation in a cell-based assay is only attributable to NAbs. The strategy of antibody depletion uses a resin mixture composed of Protein G Sepharose and Protein L Sepharose (Protein G/L resin) to significantly reduce the concentration of immunoglobulins of IgG, IgM and IgA isotypes from human serum prior to testing in the cell-based assay. If the reduction in immunoglobulins in a serum sample corresponds to a reduction in inhibition of EPO-induced proliferation, it would infer that EPO neutralizing activity is antibody-mediated and not due to non-antibody inhibitory serum factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2011.03.029DOI Listing

Publication Analysis

Top Keywords

cell-based assay
16
neutralizing antibodies
8
human serum
8
cell-based assays
8
testing cell-based
8
proliferation cell-based
8
non-antibody inhibitory
8
inhibitory serum
8
serum factors
8
protein sepharose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!