Acinetobacter baumannii has emerged as a major cause of both community-associated and nosocomial infections worldwide. A. baumannii rapidly develops resistance to multiple antibiotics; as a result, infections by this pathogen have become increasingly difficult to treat. In this study, we evaluated the effect of 3',5'-cyclic diguanylic acid (c-di-GMP), a bacterial second messenger and immunomodulator, in the host defense against A. baumannii infection in a mouse model of intranasal infection. Our results showed that 50 μg of c-di-GMP administered 18 h prior to infection provided the best protection against intranasal infection with A. baumannii. Mechanistically, administration of c-di-GMP induced the production of chemokines KC, MCP-1, MIP-1α, MIP-2 and RANTES, and enhanced neutrophil recruitment in the lung. Moreover, depletion of neutrophils abolished the protective role of c-di-GMP. Taken together, our data suggest that c-di-GMP confers resistance against intranasal A. baumannii infection in mice through a neutrophil-dependent mechanism and that c-di-GMP should be further explored as an immunomodulator for the treatment of A. baumannii infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2011.03.024DOI Listing

Publication Analysis

Top Keywords

baumannii infection
16
acinetobacter baumannii
8
infection mice
8
enhanced neutrophil
8
neutrophil recruitment
8
intranasal infection
8
c-di-gmp
7
baumannii
7
infection
7
c-di-gmp protects
4

Similar Publications

Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.

Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance remains a global threat with increasing morbidity and mortality rates. The aim of this study was to identify the antimicrobial resistance trends among ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolated from clinical samples at a Health Practice and Research Hospital over five years.

View Article and Find Full Text PDF

causes hospital-acquired infections in human patients with compromised immune system. Strains associated to nosocomial infections are often resistant to carbapenems and belong to few international clones (IC1-11). .

View Article and Find Full Text PDF

is one of the primary pathogens responsible for healthcare-associated infections. It is related to high rates of morbidity and mortality globally, mainly because of its high capacity to develop resistance to antimicrobials. Nowadays, carbapenem-resistant (CRAB) has increased and represents a significant concern among carbapenem-resistant organisms.

View Article and Find Full Text PDF

Prior studies examined Acidocin 4356's antibacterial and antivirulence effects against Pseudomonas aeruginosa, including cell membrane penetration abilities. Building on prior research, an in-vitro co-culture of human cells was established to evaluate the selectivity of Acidocin (ACD) by concurrently cultivating human cells and bacterial pathogens. This study evaluated the antibacterial effectiveness of ACD against Acinetobacter baumannii and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!