Background: Foot-and-mouth disease virus (FMDV) serotype Asia1 generally infects cattle and sheep, while its infection of pigs is rarely reported. In 2005-2007, FMD outbreaks caused by Asia1 type occurred in many regions of China, as well as some parts of East Asia countries. During the outbreaks, there was not any report that pigs were found to be clinically infected.
Results: In this study, a strain of FMDV that isolated from pigs was identified as serotype Asia1, and designated as "Asia1/WHN/CHA/06". To investigate the genomic feature of the strain, complete genome of Asia1/WHN/CHA/06 was sequenced and compared with sequences of other FMDVs by phylogenetic and recombination analysis. The complete genome of Asia1/WHN/CHA/06 was 8161 nucleotides (nt) in length, and was closer to JS/CHA/05 than to all other strains. Potential recombination events associated with Asia1/WHN/CHA/06 were found between JS/CHA/05 and HNK/CHA/05 strains with partial 3B and 3C fragments.
Conclusion: This is the first report of the isolation and identification of a strain of FMDV type Asia1 from naturally infected pigs. The Asia1/WHN/CHA/06 strain may evolve from the recombination of JS/CHA/05 and HNK/CHA/05 strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094298 | PMC |
http://dx.doi.org/10.1186/1743-422X-8-175 | DOI Listing |
J Hered
January 2025
Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, Copenhagen, 1353, Denmark.
The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA. Electronic address:
Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.
View Article and Find Full Text PDFBioengineered
December 2025
Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
In this study, we present the complete genome of LLZ14, a nodule-forming bacterium isolated from root nodules with high plant growth-promoting abilities. This genome contains genes predicted to be involved in plant stress tolerance and growth promotion, including auxin production, phosphatase, and 1-aminocyclopropane-1-carboxylate deaminase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!