Quadriceps muscle weakness is frequently associated with knee injuries in sports. The influence of quadriceps weakness on knee joint homeostasis remains undefined. We hypothesized that quadriceps weakness will lead to tissue-specific alterations in the cell metabolism of tissues of the knee. Quadriceps weakness was induced with repetitive injections of Botulinum toxin A in six 1-year-old New Zealand White rabbits for 6 months. Five additional animals served as controls with injections of saline/dextrose. Muscle weakness was assessed by muscle wet mass, isometric knee extensor torque, and histological morphology analysis. Cell metabolism was assessed for patellar tendon, medial and lateral collateral ligament, and medial and lateral meniscus by measuring the total RNA levels and specific mRNA levels for collagen I, collagen III, MMP-1, MMP-3, MMP-13, TGF-β, biglycan, IL-1, and bFGF by reverse transcription and polymerase chain reaction. While the total RNA levels did not change, tissue-specific mRNA levels were lower for relevant anabolic and catabolic molecules, indicating potential changes in tissue mechanical set points. Quadriceps weakness may lead to adaptations in knee joint tissue cell metabolism by altering a subset of anabolic and catabolic mRNA levels corresponding to a new functional and metabolic set point for the knee that may contribute to the high injury rate of athletes with muscle weakness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0838.2011.01309.x | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.
View Article and Find Full Text PDFBackground: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
iCBR - Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Coimbra, Portugal; Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Coimbra, Portugal.
Background: Cardiometabolic diseases, such as type 2 diabetes, hypertension, dyslipidemia or obesity, constitute major causes of mortality and morbidity worldwide, especially among middle-aged individuals. The increasing incidence and association with aging and lifestyle, render the cardiometabolic diseases a societal concern. This is further reinforced by their association with an increased risk of cognitive impairment and neurodegenerative diseases (namely dementia and Alzheimer's disease (AD)).
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!