The effect of Ca(2+) ions on the hydration shell of sodium dodecyl carboxylate (SDC) and sodium dodecyl sulfonate (SDSn) monolayer at vapor/liquid interfaces was studied using molecular dynamics simulations. For each surfactant, two different surface concentrations were used to perform the simulations, and the aggregation morphologies and structural details have been reported. The results showed that the aggregation structures relate to both the surface coverage and the calcium ions. The divalent ions can screen the interaction between the polar head and Na(+) ions. Thus, Ca(2+) ions locate near the vapor/liquid interface to bind to the headgroup, making the aggregations much more compact via the salt bridge. The potential of mean force (PMF) between Ca(2+) and the headgroups shows that the interaction is decided by a stabilizing solvent-separated minimum in the PMF. To bind to the headgroup, Ca(2+) should overcome the energy barrier. Among contributions to the PMF, the major repulsive interaction was due to the rearrangement of the hydration shell after the calcium ions entered into the hydration shell of the headgroup. The PMFs between the headgroup and Ca(2+) in the SDSn systems showed higher energy barriers than those in the SDC systems. This result indicated that SDSn binds the divalent ions with more difficulty compared with SDC, so the ions have a strong effect on the hydration shell of SDC. That is why sulfonate surfactants have better efficiency in salt solutions with Ca(2+) ions for enhanced oil recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la1049869DOI Listing

Publication Analysis

Top Keywords

hydration shell
16
calcium ions
12
ca2+ ions
12
ions
10
molecular dynamics
8
vapor/liquid interface
8
sodium dodecyl
8
divalent ions
8
bind headgroup
8
headgroup ca2+
8

Similar Publications

Affinity for OH Produces Four-Coordinated Zn Impurities in Hydrated Amorphous Calcium Carbonate.

Inorg Chem

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Using ab initio based molecular dynamics and electronic structure calculations, we show that Zn impurities in hydrated amorphous calcium carbonate (ACC) have a much lower coordination number than other divalent impurities due to covalent interactions between the 3d Zn shell and the oxygen atoms of the carbonate and water groups. The local structure around Zn in ACC, including the predicted low coordination number, is confirmed by X-ray absorption spectroscopy of synthetic Zn-bearing ACC. The strong Zn-O chemical interaction leads to substantial water dissociation and slightly disrupts the hydrogen bonding network.

View Article and Find Full Text PDF

Inhibiting Friction-Induced Exogenous Adhesion via Robust Lubricative Core-Shell Nanofibers for High-Quality Tendon Repair.

Biomacromolecules

January 2025

Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China.

Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM).

View Article and Find Full Text PDF

Adsorption of Eu and Gd on high-charge micas as inner-sphere complexes.

J Colloid Interface Sci

January 2025

Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:

High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.

View Article and Find Full Text PDF

FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy.

Int J Pharm

January 2025

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:

Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!