Epidermal growth factor: the driving force in initiation of RPE cell proliferation.

Graefes Arch Clin Exp Ophthalmol

Department of Ophthalmology, Ludwig Boltzmann Institute for Retinology and Biomicroscopic Lasersurgery, Rudolf Foundation Clinic, Juchgasse 25, 1030 Vienna, Austria.

Published: August 2011

Background: To analyze whether epidermal growth factor (EGF) exerts regulatory effects on proliferation and differentiation in ARPE19 cells after different incubation periods (24 vs. 48 h) for obtaining ideal conditions for feasible rejuvenation and autologous transplantation of retinal pigment epithelial cells (RPE cells).

Methods: To evaluate gene expression patterns of RPE-specific differentiation and proliferation markers as well as transcriptional and translational changes of beta-catenin (ß-catenin)-signaling markers by fluorescence activated cell sorting (FACS) and reverse transcription - polymerase chain reaction (RT-PCR) after 24 h of EGF treatment.

Results: After 24 h of EGF treatment, a significant decrease of retinal pigment epithelium-specific protein 65 (RPE 65), cellular retinaldehyde-binding protein (CRALBP) and cytokeratin 18 in ARPE-19 cells was scaled. In addition, an increase of cyclin D1 expression and a significant decrease of glycogen synthase kinase-3beta (GSK-3ß) and beta-catenin (ß-catenin) were equally observed after 24 and 48 h of EGF treatment. Cell-cycle studies revealed an increase of ARPE cells in S-G2/M phase after 24 h of EGF treatment.

Conclusions: Our data demonstrate the induction of proliferation and upregulation of the ß-catenin signaling pathway by EGF even after 24 h of incubation. As ideal cell culture conditions are essential for maintaining RPE-specific phenotypes, short incubation times enhance RPE cell quality for feasible rejuvenation and subsequent autologous transplantation of RPE cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714846PMC
http://dx.doi.org/10.1007/s00417-011-1673-1DOI Listing

Publication Analysis

Top Keywords

epidermal growth
8
growth factor
8
rpe cell
8
feasible rejuvenation
8
autologous transplantation
8
retinal pigment
8
egf treatment
8
egf
6
rpe
5
cells
5

Similar Publications

Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER subtypes with increased risk of relapse decades after diagnosis. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths. Curcumin has been reported to have suppressive effects in CRC and to address the physiological limitations of curcumin, a chemically synthesized curcuminoid analog, known as (2E,6E)-2,6-Bis (2,3-Dimethoxy benzylidine) cyclohexanone (DMCH), was developed and the anti-metastatic and anti-angiogenic properties of DMCH in colorectal cell line, SW620 were examined.

Methods: The anti-metastatic effects of DMCH were examined in the SW620 cell line by scratch assay, migration, and invasion assay, while for anti-angiogenesis properties of the cells, the mouse aortic ring assay and Human Umbilical Vein Endothelial Cells (HUVEC) assay were conducted.

View Article and Find Full Text PDF

Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers.

J Chem Inf Model

January 2025

CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.

All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.

View Article and Find Full Text PDF

Purpose: Breast cancer subtypes are delineated by human epidermal growth factor receptor 2 (HER2) expression, pivotal in treatment selection. HER2-positive tumors typically respond to targeted therapies, whereas HER2-negative tumors lack HER2 overexpression. However, a subset exhibits low HER2 expression without amplification, termed HER2 low breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!