This study is concerned with a novel mass microalgae production system which, for the first time, uses "centrate", a concentrated wastewater stream, to produce microalgal biomass for energy production. Centrate contains a high level of nutrients that support algal growth. The objective of this study was to investigate the growth characteristics of a locally isolated microalgae strain Chlorella sp. in centrate and its ability to remove nutrients from centrate. A pilot-scale photobioreactor (PBR) was constructed at a local wastewater treatment plant. The system was tested under different harvesting rates and exogenous CO(2) levels with the local strain of Chlorella sp. Under low light conditions (25 μmol·m(-2)s(-1)) the system can produce 34.6 and 17.7 g·m(-2)day(-1) biomass in terms of total suspended solids and volatile suspended solids, respectively. At a one fourth harvesting rate, reduction of chemical oxygen demand, total Kjeldahl nitrogen, and soluble total phosphorus were 70%, 61%, and 61%, respectively. The addition of CO(2) to the system did not exhibit a positive effect on biomass productivity or nutrient removal in centrate which is an organic carbon rich medium. The unique PBR system is highly scalable and provides a great opportunity for biomass production coupled with wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-011-9238-7 | DOI Listing |
Bioresour Technol
January 2025
Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; Department of Biological Technology, Xiamen Ocean Vocational College, Xiamen 361102, China; College of Fisheries, Guangdong Ocean University, Guangdong 524088, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China. Electronic address:
Sheng Wu Gong Cheng Xue Bao
October 2024
College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
The extraction of rare earth elements (REEs) through leaching with ammonium sulphate [(NH)SO] had resulted in the production of a large volume of ammonium-rich wastewater, causing severe environmental pollution. This study aimed to assess the ability of an indigenous microalga sp. YC, isolated from REEs wastewater, to directly treat real REEs wastewater under outdoor conditions in 50 L airlift photobioreactors (AL-PBRs) and 5.
View Article and Find Full Text PDFN Biotechnol
November 2024
Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom. Electronic address:
J Environ Manage
September 2024
Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
Bioresour Technol
September 2024
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
This research evaluated a microalgae consortium (MC) in a pilot-scale tubular photobioreactor for municipal wastewater (MWW) treatment, compared with an aeration column photobioreactor. Transitioning from suspended MC to a microalgae-microbial biofilm (MMBF) maintained treatment performance despite increasing influent from 50 L to 150 L in a 260 L system. Carbon and nitrogen removal were effective, but phosphorus removal varied due to biofilm shading and the absence of phosphorus-accumulating organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!