A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superstructure formation and variation in Ni-GDC cermet anodes in SOFC. | LitMetric

Superstructure formation and variation in Ni-GDC cermet anodes in SOFC.

Phys Chem Chem Phys

Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.

Published: May 2011

The microstructures and spatial distributions of constituent elements at the anode in solid oxide fuel cells (SOFCs) have been characterized by analytical transmission electron microscopy (TEM). High resolution TEM observations demonstrate two different types of superstructure formation in grain interiors and at grain boundaries. Energy-filtered TEM elemental imaging qualitatively reveals that mixture zones exist at metal-ceramic grain boundaries, which is also quantitatively verified by STEM energy dispersive X-ray spectroscopy. It was apparent that both metallic Ni and the rare-earth elements Ce/Gd in gadolinium-doped ceria can diffuse into each other with equal diffusion lengths (about 100 nm). This will lead to the existence of mutual diffusion zones at grain boundaries, accompanied by a change in the valence state of the diffusing ions, as identified by electron energy-loss spectroscopy (EELS). Such mutual diffusion is believed to be the dominant factor that gives rise to superstructure formation at grain boundaries, while a different superstructure is formed at grain interiors, as a consequence solely of the reduction of Ce(4+) to Ce(3+) during H(2) treatment. This work will enhance the fundamental understanding of microstructural evolution at the anode, correlating with advancements in sample preparation in order to improve the performance of SOFC anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp20296kDOI Listing

Publication Analysis

Top Keywords

grain boundaries
16
superstructure formation
12
formation grain
8
grain interiors
8
mutual diffusion
8
grain
6
superstructure
4
formation variation
4
variation ni-gdc
4
ni-gdc cermet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!