MM31/EIR1 promotes lateral root formation in Arabidopsis.

Plant Signal Behav

Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, Japan.

Published: July 2011

Lateral root formation in Arabidopsis provides a model for the study of auxin function. Tryptophan (Trp) is a precursor of the auxin indoleacetic acid (IAA). To study the physiological function of Trp in auxin-related phenotypes, we examined the effect of Trp on lateral root formation. We found that Trp treatment enhanced lateral root formation and, by screening for mutants in which the effect of Trp on lateral root formation was enhanced, we isolated the mm31 mutant. Based on genetic and physiological analyses, we propose that MM31/EIR1 modulates lateral root formation by regulating the IAA polar transport system, and that auxin transport from the shoot to the root regulates lateral root formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257771PMC
http://dx.doi.org/10.4161/psb.6.7.15228DOI Listing

Publication Analysis

Top Keywords

lateral root
28
root formation
28
root
8
formation arabidopsis
8
trp lateral
8
lateral
7
formation
7
trp
5
mm31/eir1 promotes
4
promotes lateral
4

Similar Publications

Background: One-hole split endoscopy (OSE) is a novel endoscopic technique that offers some advantages in spinal surgery. However, without a clear understanding of the safe zone for OSE, surgeons risk injuring nerve roots during the procedure. This study aimed to measure the safe distances among critical bone markers, the intervertebral space and nerve roots between 1-degree degenerative lumbar spondylolisthesis (DLS) and non-DLS at the L segment in patients via three-dimensional reconstruction and to compare the differences in relevant safety distances between the two groups.

View Article and Find Full Text PDF

This study reports two cases of traumatised non-vital immature teeth (IT). Both underwent surgical and nonsurgical treatments after healing failure. In the first case, both maxillary central incisors underwent revascularization as the first treatment option.

View Article and Find Full Text PDF

Successful Management of Palatal Developmental Groove-Associated Periodontal Defect Using Palatal Access Flap and Odontoradiculoplasty: A Case Report.

Case Rep Dent

January 2025

Department of Surgical Sciences, Division of Conservative Dentistry and Endodontics, School of Dental Medicine, University of Cagliari, Cagliari, Italy.

This case report discusses the successful management of a deep palatal developmental groove associated with Stage III generalized Grade C periodontitis. Despite prior nonsurgical periodontal therapy, the disease progressed rapidly, necessitating further intervention. A comprehensive evaluation revealed generalized periodontitis with localized tooth-related predisposing factor due to a developmental groove in the vital upper left lateral incisor.

View Article and Find Full Text PDF

Aim To compare the quality of obturation using WVC (warm vertical compaction), CLC (cold lateral compaction), injectable (iFill), and Thermafil (GuttaCore) techniques, along with hydraulic condensation of bioceramic (BC) sealer, and evaluating the percentage of gutta-percha (GP), sealer, and voids in simulated internal resorptive lesions, using an advanced stereomicroscope with ImageJ software (National Institutes of Health, Bethesda, MD, USA). Methods and material In this study, 40 freshly extracted maxillary incisors were collected, and endodontic instrumentation was done to working length using hand K-files. Simulated internal resorption cavities were created in the middle-apical third of the roots after horizontal sectioning and were re-cemented.

View Article and Find Full Text PDF

OsCYP22 Interacts With OsCSN5 to Affect Rice Root Growth and Auxin Signalling.

Plant Cell Environ

January 2025

Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China.

Beyond structural support, plant root systems play crucial roles in the absorption of water and nutrients, fertiliser efficiency and crop yield. However, the molecular mechanism regulating root architecture in rice remains largely unknown. In this study, a short-root rice mutant was identified and named Oscyp22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!