Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (∼ 20 min) and subject practice (∼ 20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2560/8/3/036010 | DOI Listing |
Neural Netw
January 2025
Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 138632, Singapore. Electronic address:
Accurate decoding of electroencephalogram (EEG) signals in the shortest possible time is essential for the realization of a high-performance brain-computer interface (BCI) system based on the steady-state visual evoked potential (SSVEP). However, the degradation of decoding performance of short-length EEG signals is often unavoidable due to the reduced information, which hinders the development of BCI systems in real-world applications. In this paper, we propose a relaxed matching knowledge distillation (RMKD) method to transfer both feature-level and logit-level knowledge in a relaxed manner to improve the decoding performance of short-length EEG signals.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia.
Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Obstetrics and Gynecology, ASST Monza, San Gerardo Hospital, University Milano-Bicocca, 20900 Monza, Italy.
CUOB (co-existent underactive overactive bladder) syndrome is a clinical entity that embraces storage and emptying symptoms, not strictly correlated with urodynamic findings. We assessed the differences between patients diagnosed with CUOB with/without cystocele. The study group was allocated from 2000 women who underwent urodynamic studies between 2008 and 2016.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.
Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300384, China.
Brain-computer interfaces (BCI) are an effective tool for recognizing motor imagery and have been widely applied in the motor control and assistive operation domains. However, traditional intention-recognition methods face several challenges, such as prolonged training times and limited cross-subject adaptability, which restrict their practical application. This paper proposes an innovative method that combines a lightweight convolutional neural network (CNN) with domain adaptation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!