Insulin and IGF1-dependent signaling activates protein kinase B and serum and glucocorticoid inducible kinase (PKB/SGK), which together phosphorylate and inactivate glycogen synthase kinase GSK3. Because insulin and IGF1 increase renal tubular calcium and phosphorus reabsorption, we examined GSK3 regulation of phosphate transporter activity and determined whether PKB/SGK inactivates GSK3 to enhance renal phosphate and calcium transport. Overexpression of GSK3 and the phosphate transporter NaPi-IIa in Xenopus oocytes decreased electrogenic phosphate transport compared with NaPi-IIa-expressing oocytes. PKB/SGK serine phosphorylation sites in GSK3 were mutated to alanine to create gsk3(KI) mice resistant to PKB/SGK inactivation. Compared with wildtype animals, gsk3(KI) animals exhibited greater urinary phosphate and calcium clearances with higher excretion rates and lower plasma concentrations. Isolated brush border membranes from gsk3(KI) mice showed less sodium-dependent phosphate transport and Na-phosphate co-transporter expression. Parathyroid hormone, 1,25-OH vitamin D levels, and bone mineral density were decreased in gsk3(KI) mice, suggesting a global dysregulation of bone mineral metabolism. Taken together, PKB/SGK phosphorylation of GSK3 increases phosphate transporter activity and reduces renal calcium and phosphate loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083309PMC
http://dx.doi.org/10.1681/ASN.2010070757DOI Listing

Publication Analysis

Top Keywords

phosphate transporter
12
gsk3ki mice
12
phosphate
8
transporter activity
8
phosphate calcium
8
phosphate transport
8
bone mineral
8
gsk3
6
pkb/sgk
5
pkb/sgk-resistant gsk3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!