BARTMAP: a viable structure for biclustering.

Neural Netw

GE Global Research, Niskayuna, NY 12309, USA.

Published: September 2011

AI Article Synopsis

  • Clustering is widely used to analyze gene expression data, especially in cancer research, but has limitations due to unrelated genes and samples.
  • Biclustering addresses these challenges by simultaneously clustering genes and samples, improving the identification of relationships in data without needing prior information.
  • The proposed Biclustering ARTMAP (BARTMAP) algorithm effectively uses a modified neural-based classifier for improved clustering quality and speed compared to existing methods.

Article Abstract

Clustering has been used extensively in the analysis of high-throughput messenger RNA (mRNA) expression profiling with microarrays. Furthermore, clustering has proven elemental in microRNA expression profiling, which demonstrates enormous promise in the areas of cancer diagnosis and treatment, gene function identification, therapy development and drug testing, and genetic regulatory network inference. However, such a practice is inherently limited due to the existence of many uncorrelated genes with respect to sample or condition clustering, or many unrelated samples or conditions with respect to gene clustering. Biclustering offers a solution to such problems by performing simultaneous clustering on both dimensions, or automatically integrating feature selection to clustering without any prior information, so that the relations of clusters of genes (generally, features) and clusters of samples or conditions (data objects) are established. However, the NP-complete computational complexity raises a great challenge to computational methods for identifying such local relations. Here, we propose and demonstrate that a neural-based classifier, ARTMAP, can be modified to perform biclustering in an efficient way, leading to a biclustering algorithm called Biclustering ARTMAP (BARTMAP). Experimental results on multiple human cancer data sets show that BARTMAP can achieve clustering structures with higher qualities than those achieved with other commonly used biclustering or clustering algorithms, and with fast run times.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2011.03.020DOI Listing

Publication Analysis

Top Keywords

clustering
8
biclustering clustering
8
expression profiling
8
samples conditions
8
biclustering
6
bartmap viable
4
viable structure
4
structure biclustering
4
clustering extensively
4
extensively analysis
4

Similar Publications

Investigation and elimination of noncovalent artificial aggregates during non-reduced capillary electrophoresis-sodium dodecyl sulfate analysis of a multi-specific antibody.

J Pharm Biomed Anal

January 2025

State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China. Electronic address:

Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is widely used in the biopharmaceutical industry for monitoring purity and analyzing impurities. The accuracy of the method may be compromised by artificial species resulting from sample preparation or electrophoresis separation due to suboptimal conditions. During non-reduced CE-SDS analysis of a multispecific antibody (msAb), named as multispecific antibody C (msAb-C), a cluster of unexpected peaks was observed after the main peak.

View Article and Find Full Text PDF

Sclerosis is a highly morbid manifestation of chronic GVHD (cGVHD), associated with distressing symptoms and significant long-term disability. A patient-reported outcome measure (PRO) for cGVHD-associated sclerosis is essential to advance therapeutic trials. We aimed to develop a PRO for adults with cGVHD-associated sclerosis and evaluate and refine its content validity.

View Article and Find Full Text PDF

Influence of Axial Rotation Between the Femoral Neck and Ankle Joint on Kinematics in Normal Knees: A Cross-Sectional Study.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo (Dr. Kono, Dr. Taketomi, Dr. Kage, Dr. Inui, and Dr. Tanaka); the Department of Information Systems, Faculty of Engineering, Saitama Institute of Technology, Fukaya, Saitama (Dr. Yamazaki); the Department of Orthopedic Biomaterial Science, Osaka University Graduate School of Medicine, Suita, Osaka (Dr. Tamaki, and Dr. Tomita); the Department of Orthopedic Surgery, Saitama Medical University, Saitama Medical Center, Kawagoe, Saitama (Dr. Inui); and the Department of Health Science, Graduate School of Health Science, Morinomiya University of Medical Sciences, Suminoe, Osaka, Japan (Dr. Tomita).

Background: The effect of axial rotation between the femoral neck and ankle joint (total rotation [TR]) on normal knees is unknown. Therefore, this study aimed to investigate the TR effect on normal knee kinematics.

Methods: Volunteers were divided into groups large (L), intermediate (I), and small (S), using hierarchical cluster analysis based on TR in the standing position.

View Article and Find Full Text PDF

Background: Technological advancements and globalization have shifted dietary behaviours, contributing to increased chronic disease prevalence in Low- and Middle-Income Countries (LMICs) like India. Adolescents are particularly vulnerable due to these changes, which can impact their lifelong health. This study aimed to assess the nutritional status of adolescents in public schools in Chandigarh, India.

View Article and Find Full Text PDF

Background: Pakistani women are among the most affected groups by obesity and heart failure in Catalonia. Due to cultural and linguistic barriers, their participation in standard health promotion programs is limited. To address this issue, we implemented a culturally and linguistically appropriate food education program called the PakCat Program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!