Neural membrane potential data are necessarily conditional on observation being prior to a firing time. In a stochastic leaky integrate-and-fire model, this corresponds to conditioning the process on not crossing a boundary. In the literature, simulation and estimation have almost always been done using unconditioned processes. In this letter, we determine the stochastic differential equations of a diffusion process conditioned to stay below a level S up to a fixed time t(1) and of a diffusion process conditioned to cross the boundary for the first time at t(1). This allows simulation of sample paths and identification of the corresponding mean process. Differences between the mean of free and conditioned processes are illustrated, as well as the role of noise in increasing these differences.

Download full-text PDF

Source
http://dx.doi.org/10.1162/NECO_a_00143DOI Listing

Publication Analysis

Top Keywords

sample paths
8
leaky integrate-and-fire
8
diffusion process
8
process conditioned
8
paths leaky
4
integrate-and-fire models
4
models influenced
4
influenced presence
4
presence firing
4
firing threshold
4

Similar Publications

Aiming at the problems of a six-degree-of-freedom robotic arm in a three-dimensional multi-obstacle space, such as low sampling efficiency and path search failure, an improved fast extended random tree (RRT*) algorithm for robotic arm path planning method (abbreviated as HP-APF-RRT*) is proposed. The algorithm generates multiple candidate points per iteration, selecting a sampling point probabilistically based on heuristic values, thereby optimizing sampling efficiency and reducing unnecessary nodes. To mitigate increased search times in obstacle-dense areas, an artificial potential field (APF) approach is integrated, establishing gravitational and repulsive fields to guide sampling points around obstacles toward the target.

View Article and Find Full Text PDF

It is well recognised that endothermic processes such as dehydration and partial melting have the potential to exert measurable effects on the maximum temperatures reached in metamorphic rock systems. We show migmatitic metapelitic and mafic granulites record temperatures of ~ 820 °C, while spatially associated refractory Mg-Al-rich granulites record temperatures between 865 °C and > 920 °C. These thermally contrasting samples are separated by ~ 1500 m, with no apparent intervening faults or shear zones to explain the apparent difference in peak metamorphic conditions.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Background: University graduates are leaders, great human resources, and responsible for the economic and social development of every country. The present study aimed at evaluating the mediating role of self-efficacy in the relationship between stress and effort-reward imbalance (E.R.

View Article and Find Full Text PDF

Nutrient based classification of Phyllospora comosa biomasses using machine learning algorithms: Towards sustainable valorisation.

Food Res Int

February 2025

Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, Australia. Electronic address:

Sustainable seaweed value chains necessitate accurate biomass biochemical characterisation that leads to product development, geographical authentications and quality and sustainability assurances. Underutilised yet abundantly available seaweed species require a thorough investigation of biochemical characteristics prior to their valorisation. Abundantly available Australian seaweed species lack such comprehensive investigations within the global seaweed industrial value chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!