Photoinduced surface trapping and the observed carrier multiplication yields in static CdSe nanocrystal samples.

ACS Nano

Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.

Published: May 2011

Photocharging has been suggested recently as the explanation for the spread of carrier multiplication yields reported by different groups. If this hypothesis can be plausible in the case of PbSe, it is inconsistent with the reported experimental data relative to CdSe nanocrystals and cannot therefore explain the large discrepancies found in that material system between static and stirred samples. An alternative explanation, photoinduced surface trapping, is suggested here, based on the results of atomistic semiempirical pseudopotential calculations of the Auger recombination rates in a number of excitonic configurations including a variety of surface traps, which show that the photoinduced surface trapping of the hole, which leaves the core negatively charged (but the nanocrystal neutral overall), can lead to recombination rates that are indistinguishable from those of a conventional biexciton with four core-delocalized carriers and therefore result in exaggerated CM yields in static samples. In contrast, the recombination rate of a charged exciton is found to be at least a factor of 2.3 smaller than that of the biexciton and therefore easily distinguishable from it experimentally. Although increased trapping at surface states was dismissed as unlikely for PbSe nanocrystals, in the case of CdSe, this hypothesis is further supported by much experimental evidence including recent spectroscopic measurements on CdSe nanostructures, single-nanocrystal photoionization studies on CdSe core/shell nanocrystals, and state-resolved transient absorption studies of biexcitonic states, all showing increased probability of surface trapping for highly excited states. These results suggest that multicarrier processes could be mediated by different mechanisms in CdSe and PbSe nanocrystals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn200723gDOI Listing

Publication Analysis

Top Keywords

surface trapping
16
photoinduced surface
12
carrier multiplication
8
multiplication yields
8
yields static
8
recombination rates
8
pbse nanocrystals
8
cdse
6
trapping
5
surface
5

Similar Publications

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

Gigahertz Surface Acoustic Wave Topological Rainbow in Nanoscale Phononic Crystals.

Phys Rev Lett

December 2024

Nanjing University, National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing 210093, China.

Precisely engineered gigahertz surface acoustic wave (SAW) trapping enables diverse and controllable interconnections with various quantum systems, which are crucial to unlocking the full potential of phonons. The topological rainbow based on synthetic dimension presents a promising avenue for facile and precise localization of SAWs. In this study, we successfully developed a monolithic gigahertz SAW topological rainbow by utilizing a nanoscale translational deformation as a synthetic dimension.

View Article and Find Full Text PDF

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!