Understanding liquid mixture phase miscibility via pair energy parameter behaviors with respect to temperatures determined from molecular simulations.

J Phys Chem B

Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791, Korea.

Published: May 2011

The miscibility behaviors of binary liquid mixtures were studied by a combination of molecular simulations and thermodynamic theories. Pairwise interaction parameters were obtained from molecular simulations that accounted for the effect of temperature. From a thermodynamic perspective, different types of liquid-liquid equilibrium (LLE) and different degrees of miscibility can be expressed in terms of energy behaviors with respect to temperature. Our simulation results proved this viewpoint by showing a correspondence between the simulation results and experimental observations. To describe phase diagrams, thermodynamic modeling is presented using the energy parameters obtained from the simulations. Correlations are needed to correct size mismatches between the simulations and the thermodynamic model. Using this method, not only the upper critical solution temperature (UCST) but also the closed-loop miscibility phase diagrams could be calculated without requiring additional parameters for specific interactions. The utility of this method is demonstrated for mixtures containing water, hydrocarbon, alcohols, aldehydes, ketones, chlorides, amines, nitriles, sulfides, and other organic liquids in various temperature ranges. The method presented in this paper can facilitate the understanding of the miscibilities in binary liquid mixtures from the viewpoint of thermal energy behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp2001628DOI Listing

Publication Analysis

Top Keywords

molecular simulations
12
behaviors respect
8
binary liquid
8
liquid mixtures
8
simulations thermodynamic
8
energy behaviors
8
phase diagrams
8
simulations
5
understanding liquid
4
liquid mixture
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!