A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrafast photoinduced electron transfer between tetramethylrhodamine and guanosine in aqueous solution. | LitMetric

Ultrafast photoinduced electron transfer between tetramethylrhodamine and guanosine in aqueous solution.

J Phys Chem B

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China.

Published: May 2011

Photoinduced electron transfer based fluorescence correlation spectroscopy (PET-FCS) is a powerful tool to study biomolecular processes. However, some questions remain as to how to correctly interpret the PET-FCS data. In this work, we studied the PET process between tetramethylrhodamine and guanosine by means of femtosecond transient absorption spectroscopy. We derived that the charge separation rate is 4.1 × 10(9) s(-1) and the charge recombination rate is 5.2 × 10(10) s(-1) for the current system, supporting the three-state model and the interpretation on PET-FCS experiments given by Qu et al. (J. Phys Chem. B, 2010, 114, 8235). At the limit that both the charge separation and recombination rates are much faster than the process that PET-FCS reveals, the three-state model can be simplified to an equivalent two-state model with a dark state whose brightness is nonzero. We propose ways to obtain the brightness of the dark state with additional experiments, which is necessary for a PET-FCS study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp200455bDOI Listing

Publication Analysis

Top Keywords

photoinduced electron
8
electron transfer
8
tetramethylrhodamine guanosine
8
charge separation
8
three-state model
8
dark state
8
pet-fcs
5
ultrafast photoinduced
4
transfer tetramethylrhodamine
4
guanosine aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!