The activity of Cytochrome P450 3A4 (CYP3A4) enzyme is associated with many adverse or poor therapeutic responses to drugs. We used (1)H NMR-based metabonomics to identify a metabolic signature associated with variation in induced CYP3A4 activity. A total of 301 female twins, aged 45--84, participated in this study. Each volunteer was administered a potent inducer of CYP3A4 (St. John's Wort) for 14 days and the activity of CYP3A4 was quantified through the metabolism of the exogenously administered probe drug quinine sulfate (300 mg). Pre- and postintervention fasting urine samples were used to obtain metabolite profiles, using (1)H NMR spectroscopy, and were analyzed using UPLC--MS to obtain a marker for CYP3A4 induction, via the ratio of 3-hydroxyquinine to quinine (3OH-Q:Q). Multiple linear regression was used to build a predictive model for 3OH-Q:Q values based on the preintervention metabolite profiles. A combination of seven metabolites and seven covariates showed a strong (r = 0.62) relationship with log(3OH-Q:Q). This regression model demonstrated significant (p < 0.00001) predictive ability when applied to an independent validation set. Our results highlight the promise of metabonomics for predicting CYP3A4-mediated drug response.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr200077nDOI Listing

Publication Analysis

Top Keywords

cyp3a4 induction
8
metabolite profiles
8
cyp3a4
6
prediction variability
4
variability cyp3a4
4
induction combined
4
combined nmr
4
nmr metabonomics
4
metabonomics targeted
4
targeted uplc-ms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!