Observation of water molecules within the bimolecular d(G₃CT₄G₃C)₂G-quadruplex.

Biochemistry

Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.

Published: May 2011

G-Rich oligonucleotides with cytosine residues in their sequences can form G-quadruplexes where G-quartets are flanked by G·C Watson-Crick base pairs. In an attempt to probe the role of cations in stabilization of a structural element with two G·C base pairs stacked on a G-quartet, we utilized solution state nuclear magnetic resonance to study the folding of the d(G(3)CT(4)G(3)C) oligonucleotide into a G-quadruplex upon addition of (15)NH(4)(+) ions. Its bimolecular structure exhibits antiparallel strands with edge-type loops. Two G-quartets in the core of the structure are flanked by a couple of Watson-Crick G·C base pairs in a sheared arrangement. The topology is equivalent to the solution state structure of the same oligonucleotide in the presence of Na(+) and K(+) ions [Kettani, A., et al. (1998) J. Mol. Biol.282, 619, and Bouaziz, S., et al. (1998) J. Mol. Biol.282, 637). A single ammonium ion binding site was identified between adjacent G-quartets, but three sites were expected. The remaining potential cation binding sites between G-quartets and G·C base pairs are occupied by water molecules. This is the first observation of long-lived water molecules within a G-quadruplex structure. The flanking G·C base pairs adopt a coplanar arrangement and apparently do not require cations to neutralize unfavorable electrostatic interactions among proximal carbonyl groups. A relatively fast movement of ammonium ions from the inner binding site to bulk with the rate constants of 21 s(-1) was attributed to the lack of hydrogen bonds between adjacent G·C base pairs and the flexibility of the T(4) loops.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi200201nDOI Listing

Publication Analysis

Top Keywords

base pairs
24
g·c base
20
water molecules
12
solution state
8
1998 mol
8
mol biol282
8
binding site
8
g·c
6
base
6
pairs
6

Similar Publications

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .

Microbiol Spectr

January 2025

Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.

View Article and Find Full Text PDF

Accurate drug-target binding affinity (DTA) prediction is crucial in drug discovery. Recently, deep learning methods for DTA prediction have made significant progress. However, there are still two challenges: (1) recent models always ignore the correlations in drug and target data in the drug/target representation process and (2) the interaction learning of drug-target pairs always is by simple concatenation, which is insufficient to explore their fusion.

View Article and Find Full Text PDF

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!