High resolution electron attachment to CO₂ clusters.

Phys Chem Chem Phys

Institut für Ionenphysik und Angewandte Physik, Leopold Franzens-Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.

Published: June 2011

Electron attachment to CO₂ clusters performed at high energy resolution (0.1 eV) is studied for the first time in the extended electron energy range from threshold (0 eV) to about 10 eV. Dissociative electron attachment (DEA) to single molecules yields O(-) as the only fragment ion arising from the well known (2)Π(u) shape resonance (ion yield centered at 4.4 eV) and a core excited resonance (at 8.2 eV). On proceeding to CO₂ clusters, non-dissociated complexes of the form (CO₂)(n)(-) including the monomer CO₂(-) are generated as well as solvated fragment ions of the form (CO₂)(n)O(-). The non-decomposed complexes appear already within a resonant feature near threshold (0 eV) and also within a broad contribution between 1 and 4 eV which is composed of two resonances observed for example for (CO₂)(4)(-) at 2.2 eV and 3.1 eV (peak maxima). While the complexes observed around 3.1 eV are generated via the (2)Π(u) resonance as precursor with subsequent intracluster relaxation, the contribution around 2.2 eV can be associated with a resonant scattering feature, recently discovered in single CO₂ in the selective excitation of the higher energy member of the well known Fermi dyad [M. Allan, Phys. Rev. Lett., 2001, 87, 0332012]. Formation of (CO₂)(n)(-) in the threshold region involves vibrational Feshbach resonances (VFRs) as previously discovered via an ultrahigh resolution (1 meV) laser photoelectron attachment method [E. Leber, S. Barsotti, I. I. Fabrikant, J. M. Weber, M.-W. Ruf and H. Hotop, Eur. Phys. J. D, 2000, 12, 125]. The complexes (CO₂)(n)O(-) clearly arise from DEA at an individual molecule within the cluster involving both the (2)Π(u) and the core excited resonance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b924526jDOI Listing

Publication Analysis

Top Keywords

electron attachment
12
co₂ clusters
12
attachment co₂
8
core excited
8
excited resonance
8
high resolution
4
electron
4
resolution electron
4
attachment
4
co₂
4

Similar Publications

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.

View Article and Find Full Text PDF

Microscopic Analysis of Temperature Effects on Surface Colonization and Biofilm Morphology of .

Foods

January 2025

U.S. Meat Animal Research Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Clay Center, NE 68933, USA.

represents a diverse group of pathogens commonly associated with food contamination including red meat. Even though pre- and post-harvest cleaning and sanitization procedures are widely implemented at meat processing plants to mitigate the hazard, cells may escape the process by colonizing, on contact, surfaces in the form of a biofilm that functions as an aggregated microbial community to facilitate mutual protection, antimicrobial resistance, proliferation and dissemination. Biofilm development is a complex process that can be affected by a variety of factors including environmental temperature.

View Article and Find Full Text PDF

The epithelial and mesenchymal features of colorectal adenocarcinoma (CRAC) cell lines were compared in two-dimensional (2D) and three-dimensional (3D) cultures. In 2D cultures, the three CRAC cell lines exhibited epithelial characteristics with high E-cadherin and low vimentin levels, whereas two exhibited mesenchymal traits with opposite expression patterns. In 3D cultures using low-attachment plates, mesenchymal cells from 2D cultures showed reduced vimentin mRNA levels.

View Article and Find Full Text PDF

Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!