A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. | LitMetric

Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters.

Microb Ecol

Key Laboratory of Tropical Marine Environment Dynamics (LED), South China Sea Institute of Oceanography, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.

Published: July 2011

Anaerobic ammonium oxidation (anammox) has been recognized as an important process for the global nitrogen cycle. In this study, the occurrence and diversity of anammox bacteria in the deep-sea subsurface sediments of the South China Sea (SCS) were investigated. Results indicated that the anammox bacterial sequences recovered from this habitat by amplifying both 16S rRNA gene and hydrazine oxidoreductase encoding hzo gene were all closely related to the Candidatus Scalindua genus. A total of 96 16S rRNA gene sequences from 346 clones were grouped into five subclusters: two subclusters affiliated with the brodae and arabica species, while three new subclusters named zhenghei-I, -II, and -III showed ≤ 97.4% nucleic acid sequence identity with other known Candidatus Scalindua species. Meanwhile, 88 hzo gene sequences from the sediments also formed five distant subclusters within hzo cluster 1c. Through fluorescent real-time PCR analysis, the abundance of anammox bacteria in deep-sea subsurface sediment was quantified by hzo genes, which ranged from 1.19 × 10(4) to 7.17 × 10(4) copies per gram of dry sediments. Combining all the information from this study, diverse Candidatus Scalindua anammox bacteria were found in the deep-sea subsurface sediments of the SCS, and they could be involved in the nitrogen loss from the fixed inventory in the habitat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141849PMC
http://dx.doi.org/10.1007/s00248-011-9849-0DOI Listing

Publication Analysis

Top Keywords

anammox bacteria
16
bacteria deep-sea
16
deep-sea subsurface
16
subsurface sediments
12
candidatus scalindua
12
sediments south
8
south china
8
china sea
8
16s rrna
8
rrna gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!