The zebrafish embryo is a small, cheap, whole-animal model which may replace rodents in some areas of research. Unfortunately, zebrafish embryos are commonly cultured in microtitre plates using cell-culture protocols with static buffer replacement. Such protocols are highly invasive, consume large quantities of reagents and do not readily permit high-quality imaging. Zebrafish and rodent embryos have previously been cultured in static microfluidic drops, and zebrafish embryos have also been raised in a prototype polydimethylsiloxane setup in a Petri dish. Other than this, no animal embryo has ever been shown to undergo embryonic development in a microfluidic flow-through system. We have developed and prototyped a specialized lab-on-a-chip made from bonded layers of borosilicate glass. We find that zebrafish embryos can develop in the chip for 5 days, with continuous buffer flow at pressures of 0.005-0.04 MPa. Phenotypic effects were seen, but these were scored subjectively as 'minor'. Survival rates of 100% could be reached with buffer flows of 2 µL per well per min. High-quality imaging was possible. An acute ethanol exposure test in the chip replicated the same assay performed in microtitre plates. More than 100 embryos could be cultured in an area, excluding infrastructure, smaller than a credit card. We discuss how biochip technology, coupled with zebrafish larvae, could allow biological research to be conducted in massive, parallel experiments, at high speed and low cost.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0lc00443jDOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
12
zebrafish embryo
8
development microfluidic
8
microfluidic flow-through
8
flow-through system
8
microtitre plates
8
high-quality imaging
8
embryos cultured
8
zebrafish
7
embryos
5

Similar Publications

Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms.

View Article and Find Full Text PDF

Cre-Lox miRNA-delivery technology optimized for inducible microRNA and gene-silencing studies in zebrafish.

Nucleic Acids Res

January 2025

Institute for Biomedicine and Glycomics, School of Environment and Science, Griffith University, 46 Don Young Road, Brisbane QLD 4111, Australia., Brisbane, QLD 4111, Australia.

While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations.

View Article and Find Full Text PDF

Unlabelled: Congenital NAD deficiency disorder (CNDD) is a multisystem condition in which cardiac, renal, vertebral, and limb anomalies are most common, but anomalies in all organ systems have been identified. Patients with this condition have biallelic pathogenic variants involving genes in the nicotinamide adenine dinucleotide (NAD ) synthesis pathway leading to decreased systemic NAD levels. CNDD anomalies mimic the clinical features described in vertebral-anal-cardiac-tracheoesophageal fistula-renal-limb (VACTERL) association raising the possibility that CNDD and VACTERL association possess similar underlying causes.

View Article and Find Full Text PDF

The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms.

View Article and Find Full Text PDF

Translation of mRNA into protein is a fundamental process and tightly controlled during development. Several mechanisms acting on the mRNA level regulate when and where an mRNA is expressed. To explore the effects of conditional and transient gene expression in a developing organism, it is vital to experimentally enable abrogation and restoration of translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!