In this study, we examined whether glycemic status influences aerobic function in women with type 1 diabetes and whether aerobic function is reduced relative to healthy women. To this end, we compared several factors determining aerobic function of 29 young sedentary asymptomatic women (CON) with 9 women of similar age and activity level with type 1 diabetes [DIA, HbA1c range = 6.9-8.2%]. Calf muscle mitochondrial capacity was estimated by (31)P-magnetic resonance spectroscopy. Capillarization and muscle fiber oxidative enzyme activity were assessed from vastus lateralis and soleus muscle biopsies. Oxygen uptake and cardiac output were evaluated by ergospirometry and N(2)O/SF(6) rebreathing. Calf muscle mitochondrial capacity was not different between CON and DIA, as indicated by the identical calculated maximal rates of oxidative ATP synthesis [0.0307 (0.0070) vs. 0.0309 (0.0058) s(-1), P = 0.930]. Notably, HbA1c was negatively correlated with mitochondrial capacity in DIA (R(2) = 0.475, P = 0.040). Although HbA1c was negatively correlated with cardiac output (R(2) = 0.742, P = 0.013) in DIA, there was no difference between CON and DIA in maximal oxygen consumption [2.17 (0.34) vs. 2.21 (0.32) l/min, P = 0.764], cardiac output [12.1 (1.9) vs. 12.3 (1.8) l/min, P = 0.783], and endurance capacity [532 (212) vs. 471 (119) s, P = 0.475]. There was also no difference between the two groups either in the oxidative enzyme activity or capillary-to-fiber ratio. We conclude that mitochondrial capacity depends on HbA1c in untrained women with type 1 diabetes but is not reduced relative to untrained healthy women.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00747.2010 | DOI Listing |
Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.
Purpose: Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer.
Methods: The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs).
Mol Genet Metab Rep
March 2025
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Indian Scientific Education and Technology Foundation, Lucknow, 226002, India. Electronic address:
Alzheimer's disease is a complicated, multifaceted, neurodegenerative illness that places an increasing strain on healthcare systems. Due to increasing malfunction and death of nerve cells, the person suffering from Alzheimer's disease (AD) slowly and steadily loses their memories, cognitive functions and even their personality. Although medications may temporarily enhance memory, there are currently no permanent therapies that can halt or cure this irreversible neurodegenerative process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!