Many synapses exhibit temporally complex forms of activity-dependent short-term synaptic plasticity. The diversity of these phenomena reflects the evolutionary specialization of synapses within networks. We examined the properties of transmission and plasticity, in vivo, at an identified, specialized axo-axonic nicotinic synapse between the goldfish Mauthner cell and one of its targets, the cranial relay neuron (CRN), using intracellular paired recordings and low frequency (0.33-2 Hz) train stimulations. Depression of successive excitatory postsynaptic potentials (EPSPs), which dominates short-term plasticity, had two components. A fast component reduced the amplitude of EPSP(2), to less than 50% of EPSP(1). A slow component produced an additional 10-30% of amplitude reduction and developed with a time constant of tens of seconds. The latencies of the later depressed responses were ∼0.1 ms longer than that of EPSP(1), suggesting a reduced release probability. The Ca(2+) chelators EGTA and BAPTA, injected presynaptically, reduced all EPSPs and slowed development of the second component of depression. Interestingly, spike broadening, produced by injecting K(+) channel blockers, reduced release, but accelerated the kinetics of the slow component. Finally, Ba(2+) in the external medium enhanced release, and reduced the first component and slowed the development of the second component of depression. Taken together, these last two results, which are in contrast to observations at other synapses, and the two-component depression suggest atypical release properties at the output synapses of the Mauthner cell, which triggers an escape behavior. We suggest that the second component of depression provides an additional safety factor to prevent repetitive firing of the CRN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076077 | PMC |
http://dx.doi.org/10.1242/jeb.053702 | DOI Listing |
Sci Rep
January 2025
Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common.
View Article and Find Full Text PDFNeuroscience
January 2025
Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.
View Article and Find Full Text PDFNeurosci Bull
December 2024
Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration.
View Article and Find Full Text PDFElife
December 2024
Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.
Multisensory integration (MSI) combines information from multiple sensory modalities to create a coherent perception of the world. In contexts where sensory information is limited or equivocal, it also allows animals to integrate individually ambiguous stimuli into a clearer or more accurate percept and, thus, react with a more adaptive behavioral response. Although responses to multisensory stimuli have been described at the neuronal and behavioral levels, a causal or direct link between these two is still missing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany.
The ability to follow the evolutionary trajectories of specific neuronal cell types has led to major insights into the evolution of the vertebrate brain. Here, we study how cave life in the Mexican tetra () has affected an identified giant multisensory neuron, the Mauthner neuron (MN). Because this neuron is crucial in driving rapid escapes, the absence of predation risk in the cave forms predicts a massive reduction in this neuron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!