A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrogram-based optimal atrioventricular and interventricular delays of cardiac resynchronization change individually during exercise. | LitMetric

Background: Limited data suggest that optimal atrioventricular (AV) and interventricular (VV) delays are different at rest than during exercise in patients with heart failure. We assessed the feasibility and reproducibility of an electrogram-based method of optimization called QuickOpt at rest and during exercise.

Methods: Patients with a St Jude Medical cardiac resynchronization therapy implantable cardioverter-defibrillator were subjected to a graded treadmill test, and QuickOpt was repeatedly measured prior to, during, and after the exercise.

Results: Twenty-four patients (16 males, aged 67.4 ± 7.7 years) participated. At rest, delays (in ms) were 110.4 ± 20.1 for sensed AV delay and -70 (LV pacing first) to +20 (RV pacing first) for VV delay. The changes in QuickOpt-derived delays at rest were not significant despite change in body position. During exercise, QuickOpt-derived AV delays did not change in 11 patients, were shorter during peak exercise in 8 patients, and were longer in 3 patients (average value during peak exercise was 126.5 ± 15.8 ms, P = 0.04 compared to baseline). The QuickOpt-derived VV delay gradually shifted toward earlier right ventricular pacing during exercise in 19 patients, while no changes were seen in 3 patients, and a shift occurred toward earlier left ventricular pacing in 2 patients (average value during peak exercise was -30.7 ± 22.2; P = 0.001 compared to baseline). There was no correlation between changes in the QuickOpt-derived AV and VV delays and heart rate.

Conclusions: The application of electrogram-based algorithm is feasible both at rest and during exercise. The results are reproducible. QuickOpt-derived AV and VV delays individually change during exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2010.12.047DOI Listing

Publication Analysis

Top Keywords

quickopt-derived delays
16
exercise patients
12
peak exercise
12
exercise
9
patients
9
optimal atrioventricular
8
atrioventricular interventricular
8
interventricular delays
8
cardiac resynchronization
8
delays rest
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!