Retentivity tuning in comprehensive two dimensional GC separations of aliphatics (linear and cyclic hydrocarbons) and aromatics in gasoline by changing the carrier gas flows in the column series at constant working temperature parameters of both columns is discussed. Comprehensive 2D techniques studied include GC×GC with cryogenic and differential flow modulation and non-modulated transfer (NMT). In all configurations, the first dimension was a non-polar column and the second dimension a polar column. Using three different flows (0.6, 1.0 and 1.4mL/min) of helium carrier gas in cryogenic modulated GC×GC illustrated that, as expected, retention of the solutes on the (1)D and (2)D columns increased but the separation quality was nearly constant. A change of carrier gas pressure (p(m)=175-125kPa) on the (1)D and (2)D columns joint point at constant inlet pressure (p(i)=525kPa) in NMT, induces an increase of the carrier gas flow rate on the (1)D and a decrease on the (2)D column, respectively. The higher retentivity of the (2)D column improved the group type separation of aliphatic/cyclic hydrocarbons and aromatics and a higher distribution of aromatics on the 2D retention plane was noted. Retentivity tuning was also performed in flow modulated GC×GC by operating the (1)D column at 0.8mL/min and the (2)D column at 20 and 26mL/min. The higher retentivity at 20mL/min improved the group type separation of aliphatic/cyclic hydrocarbons and aromatics in the 2D retention plane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2011.03.042DOI Listing

Publication Analysis

Top Keywords

carrier gas
16
retentivity tuning
12
hydrocarbons aromatics
12
column
8
comprehensive dimensional
8
modulated gc×gc
8
higher retentivity
8
improved group
8
group type
8
type separation
8

Similar Publications

Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.

View Article and Find Full Text PDF

With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).

View Article and Find Full Text PDF

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

Development and characterization of starch/polyvinyl alcohol active films with slow-release property by utilizing Mucorracemosus Fresenius mycelium to load with clove essential oil.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China. Electronic address:

The controlled release active packaging film represents a novel technology that always can effectively slow down the release of active agents, extending their efficacy. Mucorracemosus Fresenius (MF) mycelium was prepared and used as an adsorption carrier to load clove essential oil (CEO). The CEO/MF complexes were incorporated into the starch/polyvinyl alcohol (Starch/PVA) matrix to develop active films.

View Article and Find Full Text PDF

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!