Objectives: To report our experimental results on detection and isolation of nanobacteria-like particles (NLP) from urinary stone samples.

Methods: From March 2001 to August 2003, 47 urinary stone samples from Japanese patients and 18 from Paraguayan patients were collected and used for compositional analysis, direct survey of NLP by scanning electron microscopy (SEM) and their cultural isolation. For the isolation, culturing was carried out using strict aseptic techniques. Dulbecco's modified Eagle medium with 10% gamma-irradiated fetal bovine serum was used based on the original method described by Kajander and Ciftçioglu.

Results: Positive NLP detection rates for Japanese and Paraguayan patient samples were 61.7% (29/47) and 66.7% (12/18), respectively. Positive NLP isolation rates for Japanese patient samples were 20.6% (7/34) and 20.0% (2/10) for Paraguayan patient samples. In the initial isolation, markedly different periods of incubation time were needed for each of the nine cases (6-220 days; median 36 days). Positive detection and isolation were obtained in stone samples with or without calcium phosphate. Growth modes and morphogenesis of NLP were divided into two phases; rod-shaped NLP was detected mainly as a floating form growing in culture medium and spherical NLP with a characteristic apatite shell was detected as an attached form growing on the surface of culture dishes.

Conclusions: Lifeless calcifying nanoparticles can be isolated from various human urinary stones, cultured in cell culture mediums and show two characteristic growth phases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1442-2042.2011.02763.xDOI Listing

Publication Analysis

Top Keywords

detection isolation
12
patient samples
12
isolation nanobacteria-like
8
nanobacteria-like particles
8
urinary stones
8
urinary stone
8
stone samples
8
positive nlp
8
rates japanese
8
paraguayan patient
8

Similar Publications

Globally, drug-resistant tuberculosis (DR-TB) is responsible for 13% of mortality attributable to antimicrobial resistance. In Ethiopia, extrapulmonary tuberculosis (EPTB) is a significant public health challenge, and drug resistance (DR) in EPTB is often overlooked. In a cross-sectional study conducted between August 2022 and October 2023, we aimed to explore the magnitude of phenotypic drug resistance and identify genetic mutations linked to resistance using 189 Mycobacterium tuberculosis (MTB) isolates cultured from extrapulmonary clinical specimens.

View Article and Find Full Text PDF

Somatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (∼60X), NovaSeq (∼30X), and linked-read sequencing (∼28X).

View Article and Find Full Text PDF

The blood-brain barrier (BBB) limits drug delivery to the brain and the movement of neurological biomarkers between the brain and blood. Focused ultrasound-mediated blood-brain barrier opening (FUS-BBBO) noninvasively opens the BBB, allowing increased molecular transport to and from the brain parenchyma. Despite being initially developed as a drug delivery method, FUS-BBBO has shown promise both as a neuroimmunotherapeutic modality, and as a way of improving neurological disease diagnosis via amplification of disease biomarker circulation.

View Article and Find Full Text PDF

poses a significant global health threat due to its multidrug-resistance and outbreak potential. In this study, we report its emergence in Minas Gerais, Brazil, supported by genomic surveillance that identified Clade-IV isolates, suggested a potential introduction from Colombia, and detected a missense mutation associated with azole resistance.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) plays a crucial role in numerous cellular processes, yet its impact on human behavior remains underexplored. The current paper proposes a novel covariance structure model with seven parameters to specifically isolate and quantify mtDNA effects on human behavior. This approach uses extended pedigrees to obtain estimates of mtDNA variance while controlling for other genetic and environmental influences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!