This study evaluated the effect of tooth-preparation cleansing protocols on the bond strength of a self-adhesive resin cement to dentin contaminated with two different types of hemostatic agents. The occlusal surface of extracted third molars was flattened to expose the dentin surface and prepared for a full crown. Acrylic temporary crowns were fabricated and placed using temporary cement. The specimens were stored at 100% relative humidity for seven days. Following removal of the temporary crowns, the specimens were surface debrided using aluminum oxide abrasion with a particle size of 27 μm at 40 psi. The specimens were randomly assigned to three groups, according to the hemostatic agents: Group I–an agent containing aluminum chloride was applied to the tooth surface; Group II–an agent containing ferric sulfate was applied to the tooth surface and Group III–uncontaminated (control). The contaminated specimens were then further subdivided into three subgroups (A–C; n=12): Group A–tooth surface cleansing with water spray; Group B–tooth surface cleansing with phosphoric acid etch and Group C–tooth surface cleansing with aluminum oxide abrasion with a particle size of 27 μm at 40 psi. Ceramic blocks were treated with a 9.5% hydrofluoric acid-etch and silanized prior to being cemented with self-adhesive resin luting agent (RelyX Unicem) to the prepared dentin. The shear bond strength was determined at a crosshead speed of 0.5 mm/minute. The data were analyzed with two-way ANOVA, followed by the Duncan multiple range test, to determine any significant differences between the testing groups. The microstructure morphology of the tooth surface was evaluated using SEM analysis. The results revealed that there was a significant difference between the bond strength of the control and the contaminated testing groups (p<0.05). A tooth preparation cleansing protocol using particle abrasion with low-pressure aluminum oxide particles provided a significant improvement in bond strength to contaminated dentin, while rinsing with water spray resulted in the lowest mean bond strength of the self-adhesive resin cement to dentin (p<0.05).

Download full-text PDF

Source
http://dx.doi.org/10.2341/09-308-LR1DOI Listing

Publication Analysis

Top Keywords

bond strength
16
self-adhesive resin
12
tooth surface
12
surface cleansing
12
surface
9
tooth-preparation cleansing
8
strength self-adhesive
8
resin cement
8
cement dentin
8
dentin contaminated
8

Similar Publications

We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.

View Article and Find Full Text PDF

Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.

Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Article Synopsis
  • Emerging photovoltaics require radiation-hard materials for use in outer space, but predicting their resilience to high-energy radiation is currently a challenge.
  • The research combines lab automation and machine learning to rapidly identify and test over 130 organic hole transport materials, assessing their stability under UVC light exposure.
  • Findings reveal that materials with fused aromatic rings are more stable, while certain chemical groups negatively impact stability, providing valuable insights for future molecular design in creating durable semiconductors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!