In an attempt to develop novel coordination networks of SMMs, a Cu(II) picolinate complex has been used to coordinate S(T) = 9 tetranuclear Mn-based SMMs resulting in an intriguing 2D framework exhibiting a magnet-like behavior at low temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c000311e | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Recently, we reported on the simple, scalable synthesis of quantum-confined one-dimensional (1D) lepidocrocite titanate nanofilaments (1DLs). Herein, we show, using solid-state UV-vis spectroscopy, that reducing the concentration of aqueous 1DL colloidal suspensions from 40 to 0.01 g/L increases the band gap energy and light absorption onset of dried filtered films from ≈3.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.
View Article and Find Full Text PDFChem Asian J
January 2025
Ritsumeikan University, Department of Applied Chemistry, College of Life Sciences, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
In this study, anion-responsive π-conjugated macrocycles were synthesized to demonstrate anion-binding and ion-pairing properties along with the ordered structures. Ion-pairing charge-by-charge assembly of a [1+2]-type complex of a macrocycle as a pseudo π-electronic anion and a countercation was revealed by single-crystal X-ray analysis. Further, two-dimensional (2D) arrays of the macrocycles bearing alkoxy chains, exhibiting anion-driven disordered structures, were constructed on a highly oriented pyrolytic graphite (HOPG) substrate as observed by scanning tunneling microscopy (STM).
View Article and Find Full Text PDFJ Chem Phys
January 2025
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
By using a tight-binding model, first-principles calculations, and ab initio molecular dynamics simulations, we theoretically demonstrate that the C76-Td-assembled two-dimensional (2D) honeycomb lattice is stable at room temperature and is resistant to mechanical deformation. We disclose that each C76-Td mimics a single carbon atom (geometrically and electronically); hence, it plays the role of one supercarbon. This inspires that the 2D material exhibits an exotic hourglass-like fermion at the Fermi level.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!