We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12064-011-0125-0 | DOI Listing |
Front Immunol
January 2025
Immunology Research Center, National Health Research Institute, Zhunan, Taiwan.
CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.
View Article and Find Full Text PDFFront Immunol
January 2025
Tianjin Chest Hospital, Tianjin University, Tianjin, China.
Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.
Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.
Front Endocrinol (Lausanne)
January 2025
Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China.
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems.
View Article and Find Full Text PDFHortic Res
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, No.1 Weigang Road, Xuanwu District, Nanjing 210095, China.
Root development is a complex process involving phytohormones and transcription factors. Our previous research has demonstrated that is significantly expressed in Bok choy roots under salt stress, and heterologous expression of increases salt tolerance and promotes root development in transgenic . However, the precise molecular mechanisms by which BcWRKY33A governs root development remain elusive.
View Article and Find Full Text PDFEuro Surveill
January 2025
Medicines and Healthcare products Regulatory Agency (MHRA), South Mimms (Potters Bar), United Kingdom.
In 2024, circulating vaccine-derived poliovirus type 2 (cVDPV2) was detected in wastewater samples in Finland, Germany, Poland, Spain and the United Kingdom (UK). All strains were genetically linked, but sequence analysis showed high genetic diversity among the strains identified within individual wastewater sites and countries and an unexpected high genetic proximity among isolates from different countries. Taken together these results, with sequential samples having tested positive in various sites, a broader geographic distribution beyond positive sampling sites must be considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!