Rationale: Exposure to stressors promotes ethanol (EtOH) consumption and enhances drug craving during abstinence. Corticotropin-releasing factor (CRF), and in particular, CRF actions via type 1 CRF receptors (CRF(1)) are critical in behavioral responses to stressors. CRF(1) play a role in EtOH-induced behavioral neuroadaptation, in binge-like EtOH consumption, and in heightened EtOH consumption in dependent animals.

Objectives: We investigated the involvement of CRF(1) in swim-stress-induced changes in EtOH consumption and in baseline consumption as a function of EtOH concentration. The role of CRF(2) in adapting to effects of the stressor was also examined.

Methods: Wild-type mice and knockout mice lacking CRF(1) were tested for two-bottle choice EtOH consumption at concentrations of 3-20%. Also, intake of 10% EtOH was examined in wild-type mice and knockout mice lacking CRF(1), or lacking both CRF(1) and CRF(2), before and after acute or repeated swim stress exposures.

Results: EtOH intake was reduced in CRF(1) compared with wild-type mice when presented at a concentration of 20% but not when presented at lower concentrations. No genotype-dependent effects were found for saccharin or quinine drinking. Acute swim stress had no effect, but repeated swim stress resulted in higher levels of EtOH consumption in wild-type mice, compared with both types of knockout mice. Stress effects on EtOH drinking were longer lasting in double knockout mice.

Conclusions: These data suggest a prominent role of CRF(1) in stressor-induced changes in EtOH consumption, with involvement of CRF(2) in recovery from stressor effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312392PMC
http://dx.doi.org/10.1007/s00213-011-2284-6DOI Listing

Publication Analysis

Top Keywords

etoh consumption
28
knockout mice
16
wild-type mice
16
lacking crf1
12
swim stress
12
etoh
11
corticotropin-releasing factor
8
mice
8
consumption
8
crf1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!