Enhancement of reactive oxygen species and induction of apoptosis in streptozotocin-induced diabetic rats under hyperbaric oxygen exposure.

Int J Clin Exp Pathol

Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan.

Published: March 2011

An important source of reactive oxygen species (ROS) production is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which on activation induces superoxide production via oxidation in the mitochondria, inflammation and stress; such ROS are implicated in the pathogenesis of diabetic complications, including neuropathy. Hyperbaric oxygen (HBO) treatments are applied various diseases including diabetic patients with unhealing foot ulcers, however, and also increases the formation of ROS. In a previous study, we showed that a clinically recommended HBO treatment significantly enhanced oxidative stress of pancreatic tissue in the diabetic rats. However, no study has been undertaken with regard to the effects of HBO on the activity and gene expression of the NADPH oxidase complex and on apoptosis in the pancreas of diabetic animals. The purpose of this study was to investigate the effect of HBO exposure on gene expression of the NADPH complex, and pancreatic expression of genes related to apoptosis via the mitochondria, using the NADPH oxidase inhibitor apocynin. The mRNA expression of genes related to NADPH oxidase complex and apoptosis increased significantly (P < 0.05) in the pancreas of diabetic rats under HBO exposure. Similarly, activities of NADPH oxidase and caspase-3 changed in parallel with mRNA levels. These results suggest that oxidative stress caused by HBO exposure in diabetic animals induces further ROS production and apoptosis, potentially through the up-regulation of NADPH oxidase complex. Thus, this study can contribute to development of a better understanding of the molecular mechanisms of apoptosis via the mitochondria in diabetes, under HBO exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071658PMC

Publication Analysis

Top Keywords

nadph oxidase
24
hbo exposure
16
diabetic rats
12
oxidase complex
12
reactive oxygen
8
oxygen species
8
hyperbaric oxygen
8
ros production
8
oxidative stress
8
gene expression
8

Similar Publications

Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Unveiling the interplay between soluble guanylate cyclase activation and redox signalling in stroke pathophysiology and treatment.

Biomed Pharmacother

January 2025

Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:

Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.

View Article and Find Full Text PDF

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C.

Biochim Biophys Acta Mol Cell Res

January 2025

Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:

Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!