PTP1B is a protein tyrosine-phosphatase located on the cytosolic side of the endoplasmic reticulum that plays an important role in the regulation of the insulin receptor (IR). Replacement of the conserved Asp-181 by alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates. In this work, we have studied the effect of an additional mutation (Y46F) on the substrate-trapping efficiency of PTP1B-D181A. We observed that this mutation converts PTP1B-D181A into a highly efficient substrate-trapping mutant, resulting in much higher recovery of tyrosine-phosphorylated proteins coimmunoprecipitated with PTP1B. Bioluminescence resonance energy transfer (BRET) experiments were also performed to compare the dynamics of interaction of the IR with these mutants. Basal BRET, which mainly reflects the interaction of PTP1B with the IR precursor during its biosynthesis in the endoplasmic reticulum, was markedly increased with the PTP1B-D181A-Y46F mutant. In contrast, insulin-induced BRET was markedly reduced with PTP1B-D181A-Y46F. I(125) insulin binding experiments indicated that PTP1B-D181-Y46F reduced the expression of IR at the plasma membrane. Reduced expression at the cell surface was associated with higher amounts of the uncleaved IR precursor in the cell. Moreover, we observed that substantial amounts of the uncleaved IR precursor reached the Tris-phosphorylated, fully activated form in an insulin independent fashion. These results support the notion that PTP1B plays a crucial role in the control of the activity of the IR precursor during its biosynthesis. In addition, this new substrate-trapping mutant may be a valuable tool for the identification of new PTP1B substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103315PMC
http://dx.doi.org/10.1074/jbc.M111.222984DOI Listing

Publication Analysis

Top Keywords

substrate-trapping mutant
12
highly efficient
8
efficient substrate-trapping
8
insulin receptor
8
endoplasmic reticulum
8
precursor biosynthesis
8
reduced expression
8
amounts uncleaved
8
uncleaved precursor
8
ptp1b
7

Similar Publications

Capturing acyl-enzyme intermediates with genetically encoded 2,3-diaminopropionic acid for hydrolase substrate identification.

Nat Protoc

October 2024

Department of Oncology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Catalytic mechanism-based, light-activated traps have recently been developed to identify the substrates of cysteine or serine hydrolases. These traps are hydrolase mutants whose catalytic cysteine or serine are replaced with genetically encoded 2,3-diaminopropionic acid (DAP). DAP-containing hydrolases specifically capture the transient thioester- or ester-linked acyl-enzyme intermediates resulting from the first step of the proteolytic reaction as their stable amide analogs.

View Article and Find Full Text PDF

Protein tyrosine phosphorylation and dephosphorylation are key regulatory mechanisms in eukaryotes. Protein tyrosine phosphorylation and dephosphorylation are catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. The combinatorial action of both PTKs and PTPs is essential for properly maintaining cellular functions.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant.

View Article and Find Full Text PDF

A PTP1B-Cdk3 Signaling Axis Promotes Cell Cycle Progression of Human Glioblastoma Cells through an Rb-E2F Dependent Pathway.

Mol Cell Biol

December 2023

Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico.

PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B is a regulator of alpha-actinin4 in the glomerular podocyte.

Biochim Biophys Acta Mol Cell Res

January 2024

Department of Nutrition, University of California Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA. Electronic address:

Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!