Late gestational placental insufficiency resulting in asymmetric intrauterine organ growth restriction (IUGR) is associated with an increased incidence of diabetes, cardiovascular and renal disease in adults. The molecular mechanisms mediating these defects are poorly understood. To explore this, we investigated the mechanisms leading to IUGR in Cited1 knockout mice, a genetic model of late gestational placental insufficiency. We show that loss of placental Cited1 leads to asymmetric IUGR with decreased liver, lung, and kidney sizes and preservation of fetal brain weight. IGF and insulin signaling regulate embryonic organ growth. IGF-I and IGF-II protein and mRNA expression are reduced in livers, lungs, and kidneys of embryonic d 18.5 embryos with IUGR. Decreased IGF-I is associated with reduced activating phosphorylation of the type 1 IGF receptor (pIGF-IR) in the kidney, whereas reduced IGF-II is associated with decreased phosphorylation of the insulin receptor (pIR) in the lung. In contrast, decreased pIR is associated with reduced IGF-I but not IGF-II in the liver. However, pancreatic β-cell mass and serum insulin levels are also decreased in mice with IUGR, suggesting that hepatic IR signaling may be regulated by alterations in fetal insulin production. These findings contrast with observations in IUGR fetal brains in which there is no change in IGF-IR/IR phosphorylation, and IGF-I and IGF-II expression is actually increased. In conclusion, IUGR disrupts normal fetal IGF and insulin production and is associated with organ-specific defects in IGF-IR and IR signaling that may regulate asymmetric IUGR in late gestational placental insufficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100618PMC
http://dx.doi.org/10.1210/en.2010-1385DOI Listing

Publication Analysis

Top Keywords

late gestational
16
gestational placental
12
placental insufficiency
12
igf-i igf-ii
12
organ-specific defects
8
insulin receptor
8
asymmetric intrauterine
8
growth restriction
8
organ growth
8
iugr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!