Hypothalamic hypocretin/orexin (Hcrt/Orx) neurons recently emerged as critical regulators of sleep–wake cycles, reward seeking and body energy balance. However, at the level of cellular and network properties, it remains unclear whether Hcrt/Orx neurons are one homogeneous population, or whether there are several distinct types of Hcrt/Orx cells. Here, we collated diverse structural and functional information about individual Hcrt/Orx neurons in mouse brain slices, by combining patch-clamp analysis of spike firing, membrane currents and synaptic inputs with confocal imaging of cell shape and subsequent 3-dimensional Sholl analysis of dendritic architecture. Statistical cluster analysis of intrinsic firing properties revealed that Hcrt/Orx neurons fall into two distinct types. These two cell types also differ in the complexity of their dendritic arbour, the strength of AMPA and GABAA receptor-mediated synaptic drive that they receive, and the density of low-threshold, 4-aminopyridine-sensitive, transient K+ current. Our results provide quantitative evidence that, at the cellular level, the mouse Hcrt/Orx system is composed of two classes of neurons with different firing properties, morphologies and synaptic input organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112554 | PMC |
http://dx.doi.org/10.1113/jphysiol.2011.208637 | DOI Listing |
Endocr Rev
July 2022
Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
The hypocretin/orexin (Hcrt/Orx) system in the perifornical lateral hypothalamus has been recognized as a critical node in a complex network of neuronal systems controlling both physiology and behavior in vertebrates. Our understanding of the Hcrt/Orx system and its array of functions and actions has grown exponentially in merely 2 decades. This review will examine the latest progress in discerning the roles played by the Hcrt/Orx system in regulating homeostatic functions and in executing instinctive and learned behaviors.
View Article and Find Full Text PDFFront Neurol
July 2016
Département des neurosciences fondamentales, Centre Médical Universitaire, Geneva , Switzerland.
Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts.
View Article and Find Full Text PDFCereb Cortex
August 2016
Département des Neurosciences Fondamentales, Centre Médical Universitaire, Genève, Suisse.
Fast spiking (FS) GABAergic neurons are thought to be involved in the generation of high-frequency cortical rhythms during the waking state. We previously showed that cortical layer 6b (L6b) was a specific target for the wake-promoting transmitter, hypocretin/orexin (hcrt/orx). Here, we have investigated whether L6b FS cells were sensitive to hcrt/orx and other transmitters associated with cortical activation.
View Article and Find Full Text PDFCell Mol Neurobiol
August 2014
Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany.
Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem.
View Article and Find Full Text PDFSleep
December 2013
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!