The quaternary indole alkaloids from two Sumatran Lerchea species.

Nat Prod Commun

Faculty of Pharmacy, Andalas University, Kampus Limau Manis, Padang 25163, West Sumatra, Indonesia.

Published: March 2011

The Sumatran forest plants Lerchea cf. bracteata and L. parviflora were found to contain alkaloids and their extract showed siginificant activity toward some testing pathogenic microbes. Isolation work on L.cf bracteata yielded known quaternary alkaloid N(b)-methylantirhine (2) while L. parviflora gave 5,6-dihydroflavopereirine (3).

Download full-text PDF

Source

Publication Analysis

Top Keywords

quaternary indole
4
indole alkaloids
4
alkaloids sumatran
4
sumatran lerchea
4
lerchea species
4
species sumatran
4
sumatran forest
4
forest plants
4
plants lerchea
4
lerchea bracteata
4

Similar Publications

All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.

View Article and Find Full Text PDF

A sequential [3 + 2]/[2 + 1] annulation reactions of benzimidazole- and indole-derived acrylonitriles with vinylsulfonium salts have been developed for the first time, and shown to provide in yields of 32 to 98% a series of azabicyclo[3.1.0]hexanes containing each a cyano-substituted tetrasubstituted carbon stereocenter with >20 : 1 dr.

View Article and Find Full Text PDF

Synthesis of Carboxylic Acids Containing α-All-Carbon Quaternary Centers from Diazo Compounds and Trialkylboranes.

J Org Chem

December 2024

Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

The construction of C-C bonds to form all-carbon quaternary centers remains a significant challenge in synthetic chemistry. Herein, we report a tandem process involving a 1,2-migration of a tetra-coordinated boron intermediate followed by a Claisen rearrangement of the boron enolate, achieved through a reaction between allyl diazoacetates and trialkylboranes. The transformation forms two C-C bonds at the carbenic position of diazo substrate in a single-step operation under neutral conditions.

View Article and Find Full Text PDF

Novel steroidal β-carboline derivatives as promising antibacterial candidates against methicillin-resistant Staphylococcus aureus.

Eur J Med Chem

February 2025

Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China. Electronic address:

A novel series of steroidal β-carboline quaternary ammonium derivatives (SCQADs) derived from natural cholic acid and its derivatives was designed, synthesized and biologically evaluated against four Gram-positive bacteria for the first time. Most of these derivatives exhibited promising antibacterial activity against the tested strains, particularly, compound 21g displayed strong antibacterial activity against MRSA (MIC = 0.5-1 μg/mL) with low cytotoxicity.

View Article and Find Full Text PDF

Natural product synthesis has been the prime focus for the development of new chemical transformations and the drug discovery. The dimeric and oligomeric hexahydropyrrolo[2,3-b]indole alkaloids represent a architecturally intriguing class of cyclotryptamine alkaloids. These alkaloids share contiguous stereogenic centers with vicinal all-carbon quaternary stereogenic centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!