The synthesis of nanoporous membranes based on different concepts and materials is a field of active research. This review focuses on the synthesis strategies, mesophase evolution mechanisms and potential applications of mesoporous materials confined within anodic alumina membranes (AAM). Following a rapid evolution of synthetic techniques, a significant number of different mesoporous materials (e.g., silica, titania, and carbon) with highly regular structures can now be prepared within these membranes. In recent years, efforts have also been made to understand the formation mechanisms of these hierarchical mesophases. The resulting organized nanoporous membranes open up a wide range of potential applications in fields such as templating oriented nanowires and controlled separation and release of molecules. For example, while various synthesis strategies can be used for the preparation of membrane-embedded nanowires, the latter can also be obtained as isolated objects after dissolution of the alumina host matrix. The review also discusses issues such as control of structural defects or integrity of interfaces that should be addressed in future research in order to fully exploit the potential of these hierarchical mesoporous channel structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201002828 | DOI Listing |
ChemSusChem
January 2025
Jilin University, School of Materials Science and Engineering, Renmin street 5988, School of Materials Science and Engineering, Jilin University, 130022, Changchun, CHINA.
Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.
View Article and Find Full Text PDFMolecules
December 2024
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.
View Article and Find Full Text PDFEpilepsia
January 2025
Brain and Mind Electrophysiology Laboratory, Multimedia Systems Department, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland.
Objective: Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions.
View Article and Find Full Text PDFNat Commun
January 2025
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.
Ruthenium dioxide has attracted extensive attention as a promising catalyst for oxygen evolution reaction in acid. However, the over-oxidation of RuO into soluble HRuO species results in a poor durability, which hinders the practical application of RuO in proton exchange membrane water electrolysis. Here, we report a confinement strategy by enriching a high local concentration of in-situ formed HRuO species, which can effectively suppress the RuO degradation by shifting the redox equilibrium away from the RuO over-oxidation, greatly boosting its durability during acidic oxygen evolution.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!