Functional methods present a promising approach for the identification of skeletal kinematics, but their accuracy is limited by soft tissue artifacts (STAs). We hypothesized that consideration of the nonuniform distribution of STAs across the segment can lead to a significant improvement in the determination of the center of rotation at the hip. Twenty-four total hip arthroplasty (THA) patients performed repetitions of a star-arc movement. The location of the hip centers of rotation (CoRs) were estimated from the motion data using the Symmetrical Center of Rotation Estimation (SCoRE), both with and without procedures to minimize the effect of STAs. The precision of the CoR estimations was evaluated using the SCoRE residual, a measure of joint precision. Application of the newly developed weighted Optimal Common Shape Technique (wOCST) achieved the best CoR estimations with a precision of better than 3 mm, while the precision using raw data alone was up to seven times worse. Furthermore, consideration of the nonuniform distribution of STA across the surface of the skin using the wOCST produced an improvement of ∼24% over kinematics data processed using the standard OCST. Functional determination of the CoR at the hip using the newly developed wOCST can now identify the joint CoR with a precision of millimeters. Such approaches therefore offer improved precision in the assessment of skeletal kinematics and may aid in evaluating clinical treatment success and differentiating between therapy outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.21426 | DOI Listing |
Catheter Cardiovasc Interv
January 2025
Lancashire Cardiac Centre, Blackpool, UK.
Coronary calcification is a major factor leading to stent under-expansion, and subsequent adverse events. This meta-analysis aimed to evaluate the short and long‑term outcomes of rotational atherectomy (RA), followed by modified balloon (cutting or scoring) (MB) versus plain balloon before drug‑eluting stent implantation for calcified coronary lesions. We searched PubMed, Web of Science (WOS), Scopus, and the Cochrane Library Central Register of Controlled Trials (CENTRAL), from inception until 30 January 2024.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
, Institute for Advanced Studies in Basic Sciences, 45195-1159, Zanjan, Iran. Electronic address:
Background: Multivariate curve resolution methods are usually confronted with non-unique pure component factors. This rotational ambiguity can be represented by ranges of feasible profiles, which are equally compatible with the imposed constraints. Sensor-wise N-BANDS is an effective algorithm for the calculation of the bounds of feasible profiles in the presence of noise, but suffers from high computational cost.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:
The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!